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Sample Size Rules of Thumb
Evaluating Three Common Practices

Herman Aguinis and
Erika E. Harden

This chapter provides a description and critical analysis of three 
rules of thumb related to sample size that are commonly used by 
researchers in the organizational and social sciences. Thus, similar 
to the chapter by Vandenberg and Grelle (2008), our chapter does 
not address faulty assumptions or improper citations that can be 
traced back to an original source and have risen to the category of 
“statistical and methodological myths and urban legends.” Instead, 
we provide a critical analysis of these rules of thumb that we hope 
will provide information that will be useful to researchers in their 
own work as well as journal reviewers who evaluate the work of oth-
ers. We also hope that by discussing these rule of thumbs critically 
we will prevent them from possibly becoming statistical and meth-
odological myths and urban legends in the future.

Our chapter is about inferences regarding estimated relationships 
between variables and latent constructs or between observed indi-
cators and latent constructs. Thus, our chapter addresses rules of 
thumb about sample size related to internal, construct, and statisti-
cal conclusion validity but does not address issues of external validity 
(i.e., what sample size is needed to be able to generalize results across 
populations).

We wanted to minimize the impact of our subjective opinion on 
the process of identifying any existing rules of thumb. So, rather than 
discussing what we think are some of the existing rules of thumb that 
researchers use, we adopted an inductive approach for identifying 
any existing rules. Specifically, we conducted an in-depth review of 
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the Method, Results, and Discussion sections for each of approxi-
mately 1,260 articles published between 2000 and 2006 in the fol-
lowing journals:

Academy of Management Journal
Administrative Science Quarterly
Journal of Applied Psychology
Personnel Psychology
Strategic Management Journal

We selected the above journals because they arguably publish some 
of the most methodologically sophisticated and rigorous empirical 
research in the field of management. If rules of thumb that may not 
be appropriate, or are used inappropriately, are invoked frequently 
by researchers publishing in these journals, it is likely that these 
rules are used by researchers publishing in many other journals as 
well.

Our inductive study consisted of searching for statements and 
justifications that authors used that involved sample size. We found 
102 articles (i.e., about 8.2% of all articles included in our literature 
review) that included a statement in which authors explained how 
they chose the sample size they had, described consequences of their 
particular sample size, or explained or justified a result in relation-
ship to their sample size. We identified the following commonly 
invoked rules of thumb related to sample size:

 1. Determine whether sample size is appropriate by conducting a 
power analysis using Cohen’s definitions of small, medium, and 
large effect size.

 2. Increase the a priori Type I error rate to .10 because of a small 
sample size.

 3. Sample size should include at least 5 observations per estimated 
parameter in covariance structure analyses.

Next, we critically analyzed each of these three rules of thumb 
by answering the following questions: Where did these rules come 
from? What did the attributed sources really say about them? How 
much merit do these rules really have? Should we continue using 
these rules of thumb or should we abandon them altogether?

•
•
•
•
•
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Determine	Whether	Sample	Size	Is	Appropriate	
by	Conducting	a	Power	Analysis	Using	Cohen’s	
Definitions	of	Small,	Medium,	and	Large	Effect	Size

A crucial step in designing a study is determining sample size 
because N is one of the key determinants of statistical power. Sta-
tistical power is the probability of detecting an effect that exists in 
the population. The greater the sample size, the greater the statisti-
cal power. Statistical power is 1 – β, where β is the Type II error rate 
(i.e., the probability of not detecting an existing effect). In addition 
to sample size, power is affected by the size of the effect in the popu-
lation (i.e., the greater the effect, the greater the power), and by the 
Type I error rate (i.e., α), which is the probability of falsely conclud-
ing that an effect exists. Note that Type I and Type II error have an 
inverse relationship. In order to conduct a power analysis to deter-
mine what sample size is sufficient to detect an effect, or whether the 
sample size in hand is sufficient to detect an effect, there is a need to 
choose a targeted effect size (Aguinis, Boik, & Pierce, 2001).

Our review uncovered that a common rule of thumb in conduct-
ing a power analysis is to use Cohen’s (1988) definitions of small, 
medium, and large effect size. For instance, Raver and Gelfand (2005) 
conducted a power analysis using Cohen’s values and concluded that 
“[a] power analysis indicated that the power to detect a medium effect 
with an alpha level of .05 was 46 percent, and the power to detect a 
large effect was 86 percent (Cohen, 1988)” (p. 394). Similarly, Morge-
son and Campion (2002) also used Cohen’s definitions and noted 
that “[s]tatistical power to detect a significant R2 in the regression 
analysis was 35% for a small effect (R2 = .0196, p < .05) and 99% for a 
medium effect (R2 = .13, p < .05; Cohen, 1988)” (p. 598). A perusal of 
articles published recently in some of the major journals in the orga-
nizational and social sciences reveals many additional examples. 
Consider Kim, Hoskisson, and Wan (2004), who noted that “the pre-
cise estimates of effect sizes are generally difficult to obtain, which 
is a major obstacle to implementing power analysis. Following Lane 
and colleagues (1998), we rely on general approximations of small, 
medium, and large effect size as suggested by Cohen (1992)” (p. 625). 
Likewise, Brews and Tucci (2004) argued that “[o]ur large sample size 
alleviates concerns about statistical power (Schwenk & Dalton, 1991; 
Ferguson & Ketchen, 1999). We have adequate power to detect small, 
medium, and large effects” (p. 437). Finally, Brown (2001) also used 
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Cohen’s definitions in his power analysis and stated that “this study 
is limited by a relatively small sample size and modest reliabilities of 
some measures. Although the power to detect moderate effects (r = 
.30) at the .05 alpha level with this sample is .78, the power to detect 
small effects (r = .10) is only .14 (Cohen & Cohen, 1983)” (p. 292).

What did Cohen really recommend about the procedures to 
select a targeted effect size in conducting a power analysis to assess 
whether one’s sample size is sufficiently large? Did he recommend 
that researchers use specific values for small, medium, and large 
effects? Did these values remain consistent over time? How did he 
come up with these values? Let’s consider the cited sources.

Cohen (1992) noted that “researchers find specifying ES [effect 
size] the most difficult part of power analysis” (p. 156). To address 
this issue, Cohen, Cohen, West, and Aiken (2003; based largely on 
Cohen & Cohen, 1983, pp. 59–60) outlined the following three strat-
egies for identifying an appropriate effect size in power analysis:

 1. To the extent that studies that have been carried out by the current 
investigator or others are closely similar to the present investiga-
tion, the ESs found in these studies reflect the magnitude that can 
be expected.

 2. In some research areas an investigator may posit some mini-
mum population effect that would have either practical or theo-
retical significance.

 3. A third strategy is deciding what ES values to use in determining 
the power of a study is to use certain suggested conventional defi-
nitions of small, medium, and large effects…This option should be 
looked upon as the default option only if the earlier noted strate-
gies are not feasible. (p. 52).

Consider the history behind the conventional definitions of small, 
medium, and large effect, which should be used only if the other strat-
egies are not feasible. As described by Aguinis, Beaty, Boik, and Pierce 
(2005), Cohen’s first published description of specific magnitudes for 
effects appeared in his 1962 Journal of Abnormal and Social Psychol-
ogy article. In this article, Cohen reported results of a review and 
content analysis of articles published in the 1960 volume of this same 
journal. In the Method section of his article, when describing the 
effect sizes he used for his power analysis, Cohen (1962, p. 147) noted 
that “the level of average population proportion at which the power 
of the test was computed was the average of the sample proportions 
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found” and “the sample values were used to approximate the level 
of population correlation of the test.” For the correlation coefficient, 
Cohen defined .40 as medium because this seems to have been close 
to the average observed value he found in his review. Then, he chose 
the value of .20 as small and .60 as large. In other words, Cohen’s 
definitions of small, medium, and large effect sizes are based in part 
on observed values as reported in the articles published in the 1960 
volume of Journal of Abnormal and Social Psychology, and in part on 
his own subjective opinion. A few years later, Cohen (1988) decided 
to lower these values to .10 (small), .30 (medium), and .50 (large) 
because the originally defined values seemed a bit too high. Given 
the history behind the conventional values for small, medium, and 
large effects, it is not surprising that Cohen (1992) himself acknowl-
edged that these definitions “were made subjectively” (p. 156).

In sum, numerous researchers conduct a power analysis to deter-
mine whether a study’s sample size is sufficiently large to detect an 
effect using Cohen’s conventional definitions of effect sizes. A criti-
cal analysis of this practice in light of the sources invoked to support 
its use leads to the following conclusions. First, Cohen mentioned 
that using his admittedly conventional values is only one of three 
procedures for identifying a targeted effect size to be used in a power 
analysis to assess whether a study’s sample size is sufficiently large 
(Cohen & Cohen, 1983, pp. 59–60). In fact, this strategy should be 
used only as a last resort and only if the other two preferred strate-
gies are not feasible. However, many researchers seem to focus on 
this procedure to the exclusion of the other two. Second, Cohen him-
self noted that his values for small, medium, and large effects are 
subjective. In fact, he changed the values for small, medium, and 
large effects over time with no apparent reason but his subjective 
opinion that these values should be modified downward.

Discussion

Statistical power is the probability of detecting an effect that indeed 
exists in the population. Sample size is one of the key factors that 
affect statistical power. If statistical power is not sufficient, one risks 
the possibility of erroneously concluding that there is no effect in 
the population. Thus, when an effect is not found, journal reviewers 
usually request that a power analysis be conducted to assess whether 
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a study’s sample size was sufficiently large. At that point, a researcher 
must make a decision about what targeted effect size to use because 
choosing a large effect may lead to the conclusion that a particular N 
was sufficiently large, but this same N may not be sufficiently large to 
detect a smaller effect. In short, a particular sample size may be seen 
as adequate or not depending on the targeted effect size used in the 
power analysis.

Although Cohen suggested three strategies for identifying the 
effect size to be used in a power analysis, most researchers use the 
effects that Cohen labeled small, medium, and large. Per Cohen’s 
own admission, these values are largely subjective. As our review 
indicates, they were initially derived from a very narrow literature 
review of articles published in the 1960 volume of the Journal of 
Abnormal and Social Psychology. However, using these values is a 
pervasive practice, perhaps because it is more convenient to do so as 
compared to using the other two preferred strategies for identifying 
targeted effect sizes (i.e., an effect size derived from previous litera-
ture or an effect size that is scientifically or practically significant).

The two preferred strategies for identifying a targeted effect size 
used in a power analysis point to the need to take into account the 
specific research context and domain in question and to not rely on 
broad-based conventions. For example, Cohen (1988) wrote that, for 
the f2 effect size, .02 is a “small effect.” However, Aguinis et al. (2005) 
conducted a 30-year review of all articles in Academy of Management 
Journal, Journal of Applied Psychology, and Personnel Psychology that 
used moderated regression to test hypotheses about categorical mod-
erator variables and found that the median effect size is f2 = .002 (i.e., 
10 times smaller than what Cohen labeled as a small effect). Cohen 
(1988) himself recommended that context be taken into account in 
choosing a targeted effect size in a power analysis when he wrote that 
effect sizes are relative not only to each other but also “to the area of 
behavioral science or even more particularly to the specific content 
and research methods being employed in any given investigation” 
(p. 25).

Finally, also related to the importance of placing a particular 
effect within its context, it is generally not appropriate to equate 
Cohen’s “small” (which requires a large N to be detected) effect with 
“unimportant effect” and Cohen’s “large” effect (which requires 
a smaller N to be detected) with “important effect.” In some con-
texts, what seems to be a small effect can actually have important  
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consequences. For example, Martell, Lane, and Emrich (1996) found 
that an effect size of 1% regarding male-female differences in perfor-
mance appraisal scores led to only 35% of the highest-level positions 
being filled by women. Accordingly, Martell et al. (1996) concluded 
that “relatively small sex bias effects in performance ratings led to 
substantially lower promotion rates for women, resulting in propor-
tionately fewer women than men at the top levels of the organiza-
tion” (p. 158). Aguinis (2004) and Aguinis et al. (2005) described 
several additional illustrations of how, in some contexts, effects that 
are labeled as “small” based on Cohen’s definitions actually have very 
significant consequences for both theory and practice.

Summary: The rule of thumb: Researchers determine the appro-
priateness of a particular sample size by conducting a power analy-
sis using Cohen’s definitions of small, medium, and large effect size. 
The kernel of truth: The use of Cohen’s small, medium, and large 
effect size is only one of three methods that he recommended, and 
the least preferred of the three, to determine sample size via a power 
analysis. The inappropriate application of the rule of thumb: The def-
initions of small, medium, and large effect size are believed to have 
been determined objectively and can be used regardless of research 
context and domain. The follow-up: Future research is needed to 
understand the size of minimally meaningful targeted effect sizes in 
various research contexts and research domains.

Increase	the	A	Priori	Type	I	Error	Rate	to	.10	
Because	of	Your	Small	Sample	Size

Recall that statistical power is 1 – β, β is the Type II error rate, and 
β is inversely related to α (i.e., Type I error rate). In the presence of 
what is seen as a small N, many authors decide to increase the a pri-
ori α from the usual .01 and .05 values to .10 or even .20 to decrease 
β and increase statistical power. Our review revealed that this is a 
fairly common rule of thumb. For example, Brown (2003) noted that 
“[g]iven that the sample was now relatively small (i.e., 41 teams), an 
α level of .10 was used for all hypothesis testing following the recom-
mendations of Kervin (1992)” (p. 951). Likewise, Garg, Walters, and 
Priem (2003) argued that “our sample size is not overly large; it is 
appropriate to use a less conservative criterion for statistical signifi-
cance (Sauley & Bedeian, 1989; Skipper, Guenther, & Nass, 1967). We 
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therefore selected .1, a priori, as the appropriate level of significance 
for testing our hypotheses” (p. 734). As another illustration, Boland, 
Singh, Salipante, Aram, Fay, and Kanawattanachai (2001) increased 
their a priori α to .20 using the justification that their sample was 
small. Specifically, they stated that “[t]he small sample required that 
we balance Type I and Type II error rates in statistical testing. At a 
traditional 95 percent confidence level, the power is only .20 (Cohen, 
1977), given an average cell size of 12. Stevens (1996: 172) recom-
mended a more ‘lenient’ alpha level as a way to improve power. We 
chose an 80 percent confidence level to ensure at least a power of 
0.50. Thus, we set the Type I error rate at 20 percent” (p. 399).

As shown by the above illustrations, the practice of relaxing the 
a priori α level to .10 or even .20 is a methodological practice often 
implemented when a study includes a small sample. Increasing the 
α level increases statistical power and the chances of detecting an 
existing effect. However, is this practice really justified by the cited 
sources? In other words, do the cited sources actually suggest increas-
ing alpha to the specific value of .10 or even .20? Why not .15? Or .40, 
for that matter? Let’s consider the evidence.

Sauley and Bedeian (1989) is often invoked as a source in support 
for the increase of α to .10. In discussing research studies with small 
samples, Sauley and Bedeian noted that

when either sample size or anticipated effect size are small, a researcher 
should typically select a less conservative level of significance (e.g., .10 
vs. .05). (p. 340)

However, these authors also noted that

there is no right or wrong level of significance. Blind adherence to the .05 
level of significance as the crucial value for differentiating publishable 
from unpublishable research cannot be justified. As Skipper et al. (1967) 
suggest, the selection of a significance level by a researcher should be 
treated as one more research parameter. Rather than being set at a priori 
levels of .05, .01, or whatever, the appropriateness of specific level of sig-
nificance should be based upon considerations such as… sample size, 
effect size, measurement error, practical consequences of rejecting the 
null hypothesis, coherence of the underlying theory, degree of experi-
mental control, and robustness. (p. 339)

Kervin (1992), which is another source used in support of the use 
of an increase α to .10, noted that
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[s]ince sampling error is larger with smaller samples, you may want to 
be more lenient (larger alpha) with smaller samples, other matters being 
equal, in order to avoid low research power. (p. 557)

Finally, in another one of the sources cited in support of an 
increase in the a priori α to .10, Stevens (1996) argued that when one 
has a small sample,

it might be prudent to abandon the traditional α levels of .01 or .05 to a 
more liberal α level to improve power sharply. Of course, one does not get 
something for nothing. We are taking a greater risk of rejecting falsely, 
but that increased risk is more than balanced by the increase in power. 
(p. 137)

In sum, the recommendation that we increase our a priori α level 
to .10 is fairly common in the literature as a means to increase statis-
tical power in the presence of a small sample size. However, a care-
ful examination of this recommendation in light of the sources used 
to support this practice leads to the following conclusions. First, 
the practice of increasing the a priori α is reasonable and leads to 
increased statistical power. Second, however, the practice to increase 
α to the specific value of .10 or even .20 is subject to the criticism that 
these values are arbitrary, much like the values of .05 and .01 are also 
arbitrary. Moreover, without taking into account the research con-
text (e.g., negative consequences of incorrectly concluding there is an 
effect as a consequence of a Type I error), the practice of increasing 
the α level to an arbitrarily selected greater value may be equally as, 
or even more, detrimental to theory development and practice than 
having a small sample size, insufficient statistical power, and errone-
ously concluding that there is no effect.

Discussion

In the organizational and social sciences, researchers usually adopt 
the conventional .05 and .01 values for the a priori α (i.e., probability 
of erroneously concluding that there is an effect). As noted above, 
many authors choose to increase α to .10 or .20. However, this choice 
is seldom justified and no discussion is usually provided regarding 
the trade-offs involved (i.e., increase in the probability of commit-
ting a Type I error). If one wishes to increase power by increas-
ing α, one should make an informed decision about the specific  
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trade-off between Type I and Type II errors rather than choosing an 
arbitrarily larger value for α.

Murphy and Myors (1998) suggested a useful way to weigh 
the pros and cons of increasing the Type I error rate for a specific 
research situation. The appropriate balance between Type I and Type 
II error rates can be achieved by using a preset Type I error rate that 
takes into account the Desired Relative Seriousness (DRS) of making 
a Type I versus a Type II error. Because Type II error = 1 – power, 
this strategy is also useful for choosing an appropriate Type I error 
in relation to statistical power.

Instead of increasing α to an arbitrary value, researchers can 
make a more informed decision regarding the specific value to give 
to α. Consider the following situation described by Aguinis (2004, 
pp. 86–87). A researcher is interested in testing the hypothesis that 
the effectiveness of a training program for unemployed individuals 
varies by region such that the training program is more effective in 
regions where the unemployment rate is higher than 6%. Assume 
this researcher decides that the probability of making a Type II error 
(i.e., β, incorrectly concluding that unemployment rate in a region 
is not a moderator) should not be greater than .15. The researcher 
also decides that the seriousness of making a Type I error (i.e., incor-
rectly concluding that percentage of unemployment in a region is a 
moderator) is twice as serious as making a Type II error (i.e., DRS = 
2). Assume the researcher makes the decision that DRS = 2 because 
a Type I error means that different versions of the training program 
would be needlessly developed for various regions and this would 
represent a waste of the limited resources available. The desired preset 
Type I error can be computed as follows (Murphy & Myors, 1998):
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where p(H1) is the estimated probability that the alternative hypoth-
esis is true (i.e., there is a moderating effect), β is the Type II error 
rate, and DRS is a judgment of the seriousness of a Type I error vis-
à-vis the seriousness of a Type II error.

For this example, assume that based on a strong theory-based 
rationale and previous experience with similar training programs, 
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the researcher estimates that the probability that the moderator 
hypothesis is correct is p(H1) = .6. Solving Equation 11.1 yields
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Thus, in this particular example, using a nominal Type I error rate of 
.11 would yield the desired level of balance between Type I and Type 
II statistical errors.

Implementing this procedure for choosing the specific a priori 
Type I error rate provides a more informed and better justification 
than using any arbitrary value such as .10 or .20 without carefully 
considering the trade-offs and consequences of this choice. Also, 
implementing this more informed strategy for selecting an a priori 
α is less likely to raise concerns among journal editors and reviewers 
as compared to selecting any arbitrary value.

Summary: The rule of thumb: When faced with a small sample, 
researchers increase the a priori Type I error rate to .10 or even .20 as 
a means to increase statistical power. The kernel of truth: Increasing 
Type I error will increase statistical power (i.e., probability of detect-
ing existing effects). The inappropriate application of the rule of 
thumb: Increasing Type I error rate to .10, .20, or any other arbitrarily 
selected value is assumed to be beneficial regardless of research con-
text and research domain. The follow-up: Future research is needed 
to understand the trade-offs involved in making Type I in relation to 
Type II errors in various research contexts and research domains.

Sample	Size	Should	Include	at	Least	5	Observations	per	
Estimated	Parameter	in	Covariance	Structure	Analyses

It seems to be common knowledge that a factor analysis should 
include 5 observations per estimated parameter. This 5:1 ratio seems 
to be a common recommendations and is followed not only in the 
context of factor analysis but also in testing the fit of a measurement 
model before testing a substantive structural model in structural 
equation modeling, path analysis, and other types of analyses based 
on covariance structures (e.g., Pierce, Aguinis, & Adams, 2000; 
Pierce, Broberg, McClure, & Aguinis, 2004). The 5:1 ratio rule is also 



278	 Herman	Aguinis	and	Erika	E.	Harden

used by authors in referring to structural models, not just measure-
ment models.

Bentler’s work is a source often cited in support of the 5:1 ratio 
rule of thumb. For example, Kinicki, Prussia, Wu, and McKee-Ryan 
(2004) stated that “Bentler (1990) recommends a minimum of five 
cases for each estimated parameter in structural models” (p. 1061). 
Likewise, Epitropaki and Martin (2004) cautioned that their results 
should be interpreted with caution because “the minimum 5:1 cases 
per parameter (Bentler, 1995) is still not met in those six groups” (p. 
304). Additionally, Takeuchi, Yun, and Tesluk (2002) cited Bentler 
and Chou (1987) when stating that “[i]t is recommended that in 
SEM, the ratio of respondents to parameters estimated should be at 
least 5:1” (p. 660). Finally, as an additional illustration, Sturman and 
Short (2000) noted that “although strict guidelines for minimum 
sample sizes do not exist (Anderson & Gerbing, 1988), our sample of 
416 exceeds the minimum of 200 recommended by Boomsma (1982), 
and our sample size to parameter ratios of at least 8:1 exceed the sug-
gested minimum of 5:1 for reliable maximum likelihood estimation 
(Bentler, 1985)” (p. 685).

What is the origin of the 5:1 ratio rule? Did Bentler (1985) really 
say that we need 5 observations per parameter estimated in a covari-
ance structure analysis to obtain trustworthy estimates? Let’s con-
sider the evidence.

In a frequently cited source used to invoke this rule of thumb, 
Bentler (1985) noted the following:

An over-simplified guideline regarding the trustworthiness of solutions 
and parameter estimates might be the following. The ratio of sample size 
to number of free parameters to be estimated may be able to go as low 
as 5:1 under normal elliptical theory. Although there is little experience 
on which to base a recommendation, a ratio of at least 10:1 may be more 
appropriate for arbitrary distributions. (p. 3)

These ratios need to be larger to obtain trustworthy z-tests on the sig-
nificance of parameters, and still larger to yield correct model evaluation 
chi-square probabilities. (p. 3)

Two years later, Bentler and Chou (1987, p. 90) identified “large” 
sample size as one of the statistical requirements of structural equation 
modeling because “the statistical theory is based on ‘asymptotic’ theory, 
that is, the theory that describes the behavior of statistics as the sample 
size becomes arbitrarily large (goes to infinity). In practice, samples 
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can be small to moderate in size, and the question arises whether large 
sample statistical theory is appropriate in such situations.”

Bentler and Chou provided a virtually verbatim “oversimplified 
guideline” from Bentler (1985) to serve as a rule of thumb regarding the 
ratio of number of observations per parameters estimated in a model:

The ratio of sample size to number of free parameters may be able to go as 
low as 5:1 under normal and elliptical theory, especially when there are 
many indicators of latent variables and the associated factor loadings are 
large. Although there is even less experience on which to base a recom-
mendation, a ratio of at least 10:1 may be more appropriate for arbitrary 
distributions. These ratios need to be larger to obtain trustworthy z-tests 
on the significance of parameters, and still larger to yield correct model 
evaluation chi-square probabilities. (p. 91)

In sum, having an appropriate number of observations per esti-
mated parameter in a factor analysis, as in any covariance structure 
analyses, is obviously an important issue. Not having a sufficient 
number of observations will lead to unstable and untrustworthy 
parameter estimates. However, a closer examination of the 5:1 ratio 
as described in the cited sources leads to the following conclusions. 
First, this is a lower-bound value and an oversimplified rule of 
thumb and not necessarily a desirable value. Invoking the 5:1 rule of 
thumb in support of the conclusion that a particular sample size is 
ideal is misleading. Second, this ratio applies to situations in which 
multivariate normality has been observed, which is an unusual situ-
ation in the organizational and social sciences. In fact, when mul-
tivariate normality is not present, a ratio of at least 10 observations 
per estimated parameter is recommended for obtaining trustwor-
thy estimates of parameters. Moreover, an even larger number of 
observations is required to obtain trustworthy estimates of the sta-
tistical significance of parameters.

Discussion

Researchers seem to focus on what is an “oversimplified” guideline 
of 5 observations per parameter. Moreover, this guideline applies 
to situations in which the data follow a multivariate normal distri-
bution only, which is not typical in the organizational and social 
sciences. This oversimplified guideline of 5 observations per esti-
mated parameter should be seen as a lower-bound value and not  
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necessarily a desirable value, particularly when the multivariate 
normality assumption is violated. Invoking the 5:1 rule of thumb to 
claim that a particular study has the ideal sample size and follows 
best practices is misleading.

Summary: The rule of thumb: Sample size should be such that 
there are at least 5 observations per estimated parameter in a factor 
analysis and other covariance structure analyses. The kernel of truth: 
This oversimplified guideline seems appropriate in the presence of 
multivariate normality. The inappropriate application of the rule 
of thumb: The 5:1 ratio is believed to be an ideal and best-practice 
research scenario. The follow-up: Future research is needed to under-
stand the appropriateness of the 5:1 ratio in the presence of multivar-
iate normality and for various degrees of model complexity.

Discussion

In this chapter, we have discussed three rules of thumb related to 
sample size that, based on a review of articles published from 2000 
to 2006 in some of the most prestigious journals in management, 
are invoked quite commonly. Table 11.1 summarizes each rule of 
thumb, the kernel of truth, the inappropriate application of each rule 
of thumb, and the research needed regarding each of these rules of 
thumb.

Why are these rules of thumb used? We can only speculate on the 
reasons, but we suspect that some authors may invoke these rules of 
thumb as a preemptive strike to counter a potential criticism from 
a reviewer when results do not turn out as predicted (e.g., there is 
lack of support for a hypothesized effect). Others may invoke these 
rules as a response to a criticism from a reviewer (i.e., “your sample 
size is not sufficient for a covariance structure analysis,” “your small 
sample size led to insufficient statistical power to detect population 
effects”) or even at the direction of a reviewer or a journal editor 
(i.e., “given your small sample size, you must conduct a power analy-
sis using Cohen’s definitions of effect size”). Regardless of the rea-
son for invoking these rules, we emphasize that our focus is on a 
critical analysis of these rules and not on specific authors who have 
used them. It is not our intention to point fingers and blame specific 
authors. In fact, we are ourselves guilty of using some of the rules of 
thumb we critically analyzed in this chapter (e.g., Aguinis & Stone-
Romero, 1997, used Cohen’s definitions of small, medium, and large 
effect sizes).
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TABLE 11.1 Critical Analysis Summary for the Three Rules of Thumb 
Related to Sample Size
The rule of 
thumb

We should 
determine the 
appropriateness of 
N by conducting a 
power analysis 
using Cohen’s 
definitions of 
small, medium, 
and large effect 
size. 

When faced with a 
small N, we should 
increase the a priori 
Type I error rate to 
.10 or even .20 as a 
means to increase 
statistical power. 

N should include at 
least 5 observations 
per estimated 
parameter in a 
factor analysis and 
other covariance 
structure analyses.

The kernel of 
truth

The use of Cohen’s 
small, medium, and 
large effect sizes is 
only one of three 
methods (but the 
least preferred) that 
can be used to 
determine the 
appropriateness of 
N via a power 
analysis.

The increase of Type I 
error will increase 
statistical power  
(i.e., probability of 
detecting existing 
effects).

This oversimplified 
guideline seems 
appropriate in the 
presence of 
multivariate 
normality.

The 
inappropriate 
application of 
the rule of 
thumb

The definitions of 
small, medium, 
and large effect size 
are believed to 
have been 
determined 
objectively and can 
be used regardless 
of research context 
and domain.

The increase of Type 
I error rate to .10, 
.20, or any other 
arbitrarily selected 
value is assumed to 
be beneficial 
regardless of 
research context 
and research 
domain.

The 5:1 ratio is 
assumed to be an 
ideal and best-
practice research 
scenario.

Research 
needed

What is the size of 
minimally 
meaningful 
targeted effect sizes 
in various research 
contexts and 
research domains?

What are the trade-
offs involved in 
making Type I in 
relation to Type II 
errors in various 
research contexts 
and research 
domains?

What is the 
appropriateness of 
the 5:1 ratio in the 
presence of 
multivariate 
normality and for 
various degrees of 
model complexity?
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The first question we discussed is, Should we determine sample 
size by conducting a power analysis using Cohen’s conventional defi-
nitions of small, medium, and large effect sizes? The answer to this 
question is no. First, Cohen’s values are, by his own admission, largely 
subjective and may not be relevant in many research domains in the 
organizational and social sciences. Second, one should take context 
into account in choosing a targeted effect size for a power analysis. In 
many situations, what is commonly labeled as a small effect can have 
great significance for science and practice. Finally, rather than using 
Cohen’s definitions, there are two preferred strategies for identifying 
a targeted effect size in a power analysis: (a) derive it from previ-
ous literature or (b) choose an effect size that will have significant 
implications for theory and practice. Unfortunately, using Cohen’s 
definitions of effect size to conduct a power analysis is often used 
as a rationalization for concluding that a specific sample size is suf-
ficiently large. In many cases, this argument is used inappropriately 
to avoid facing the inconvenient fact that a particular study’s sample 
size is not sufficiently large to detect effect sizes that are practically 
or scientifically significant.

The second question we addressed is, When one has a small sam-
ple, is it advisable to increase the a priori Type I error rate to .10 
or .20 to increase statistical power? The answer to this question is 
“it depends.” If the increased α value is chosen arbitrarily, then the 
answer is no. However, if the increased value is chosen after a care-
ful examination of the trade-offs involved between Type I and Type 
II error, then the answer is yes. Overall, an increase in the a priori 
Type I error rate is justified if the resulting value is chosen via an 
informed balancing of the trade-offs involved. Increasing the Type 
I error and choosing a value based on an informed decision is also 
likely to be more readily accepted by journal editors and reviewers 
as compared to choosing an arbitrarily larger value (e.g., .10 or .20). 
Unfortunately, arbitrarily increasing the a priori Type I error rate 
to .10 or .20 is often used as a rationalization for ignoring the result 
that the hypothesized effect is not statistically significant at the more 
traditional .05 or .01 levels. In many cases, as when Cohen’s defini-
tions of effect size are used, this argument is used inappropriately to 
avoid facing the inconvenient fact that a particular study’s sample 
size is not sufficiently large to detect effect sizes that are practically 
or scientifically significant.
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The final question we discussed is, Is it true that a sample size 
that includes 5 observations per estimated parameter in a covariance 
structure analysis leads to trustworthy estimates? The answer to this 
question is “it depends.” In most situations in the organizational and 
social sciences in which the data do not follow a multivariate nor-
mality pattern, at least 10 observations per parameter estimated are 
needed. On the other hand, 5 observations per parameter estimated 
may suffice when the data are multivariate normal (which is not a 
frequent situation). Nevertheless, this is an oversimplified rule and a 
lower-bound value for the number of observations. Thus, researchers 
should not invoke the 5:1 rule of thumb to support a statement that 
the sample size is ideal. Unfortunately, using the 5:1 rule of thumb is 
often used as a rationalization for using a sample size that may be too 
small. In many cases, this argument is used inappropriately to avoid 
facing the inconvenient fact that a particular study’s sample size is 
not sufficiently large, resulting in large standard errors and difficul-
ties in replicating the findings in future studies.

In closing, the phrase rule of thumb has many purported origins. 
One of them is that is that the phrase originates from some of the 
many ways that thumbs have been used to draw inferences regarding 
the alignment or distance of an object by holding the thumb in one’s 
eye-line, the temperature of brews of beer, or the estimated inch from 
the joint to the nail. We hope our critical analysis of the three rules 
of thumb regarding sample size will improve the way organizational 
and social scientists draw inferences from their own research.
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