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A revised and improved version of Aguinis, Pierce, and Stone-Romero’s (1994) program
for estimating the statistical power of moderated multiple regression to detect dichoto-
mous moderator variables is described. The QuickBASIC program runs on IBM and
IBM-compatible personal computers and estimates power based on user-provided values
for (a) total sample size, (b) sample sizes across the two moderator-based subgroups, (c)
correlation coefficients between the predictor and criterion for each of the two modera-
tor-based subgroups, (d) correlation coefficient between the predictor and hypothesized
moderator, and (¢) sample and population standard deviations for the predictor. Program-
generated power estimates for typical research situations in education, psychology, and
management indicate that hypothesis tests of moderating effects are typically conducted
at insufficient levels of statistical power.

Numerous theories in education, psychology, and management posit the
operation of moderator variables; that is, variables that interact with a
predictor (X) in explaining variance in a criterion (Y). Variable Z is defined
as a moderator of an X-Y relationship when the nature of this relationship
varies across values or levels of Z (Saunders, 1956; Zedeck, 1971).

Given ongoing theoretical advancements, researchers are increasingly
interested in complex relationships that go beyond main effects. Accordingly,
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interest in moderator variables is increasing substantially in education, psy-
chology, management, and related disciplines (e.g., Aguinis, Bommer, &
Pierce, 1996; Aguinis & Pierce, in press; MacCallum & Mar, 1995; Sagie &
Koslowsky, 1993).

Moderated multiple regression (MMR) has long been considered an
appropriate statistical technique for estimating the effects of continuous and
categorical moderator variables (Aguinis & Pierce, 1998; Cohen & Cohen,
1983; Saunders, 1956). Conducting an MMR analysis entails forming a
sample-based least squares regression equation that tests the additive model
for predicting a criterion Y from predictors X and Z and the interaction
between X and Z (i.e., moderating effect of Z), represented by the X X Z
product term as follows:

Y=a+bX+bZ+bXxZ )

where /Y\'is the predicted value for Y, a is the least squares estimate of the
intercept, b, is the least squares estimate of the population regression coeffi-
cient for X, b, is the least squares estimate of the population regression
coefficient for Z, and b, is the least squares estimate of the population
regression coefficient for the product term that carries information about the
interaction between X and Z (Cohen & Cohen, 1983). Rejecting the null
hypothesis of ; = 0 indicates the presence of an interaction or moderating
effect. Stated differently, rejecting this null hypothesis indicates that the
regression of ¥ on X is unequal across levels of Z (e.g., minority and
nonminority subgroups, male and female subgroups).

Statistical Power Problems With MMR

MMR is aroutinely used method for estimating and interpreting the effects
of dichotomous moderators such as ethnicity (minority vs. nonminority) and
gender (male vs. female) (Sackett & Wilk, 1994; Stone, 1988). Unfortunately,
attempts to detect hypothesized moderating effects using MMR are often
unsuccessful due to insufficient statistical power (Aguinis, 1995). Thus, to
identify conditions that adversely affect the power of MMR, Aguinis and
Stone-Romero (1997) conducted a Monte Carlo simulation that examined
the main and interactive effects of the following methodological and statis-
tical factors on the power of MMR: (a) range restriction on a continuous
predictor variable X (i.e., ratio of sample to population standard deviation
scores; RR), (b) total sample size (N), (c) relative proportion of cases in each
of the two dichotomous moderator variable-based subgroups Z (p, = n\/N,
where n, + n, = N), (d) predictor-moderator intercorrelation (i.e., multicol-
linearity; pxz), and (e) magnitude of the population moderating effect (i.e.,
absolute difference between pyy levels for the two moderator-based sub-
groups, Ipxya) — Pxreyl; effect size, ES). To more easily interpret the results of
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the simulation, the empirically obtained power rates were regressed onto
values of the manipulated methodological and statistical artifacts. Results of
Aguinis and Stone-Romero’s simulation showed that the manipulated factors
had both main and interactive effects on the power of MMR.

Regarding the main effects, results showed that predictor variable range
restriction, total sample size, sample sizes across the two moderator-based
subgroups, and moderating effect size each had profound effects on the power
of MMR. As an example of the effects of range restriction, for a medium
moderating effect size, equal number of cases in the two moderator-based
subgroups, and total sample size of 300, predictor range restriction values of
.80, .40, and .20 reduced power to .94, .80, and .67, respectively.

Regarding the interactive effects, results indicated that the two-way inter-
actions between the manipulated methodological and statistical artifacts
accounted for nearly 17% of the variance in the empirically generated MMR
power rates above and beyond the influence of the main effects. Converting
this value to Cohen’s (1988) metric yielded an effect size (f?) of 3.25, which
is nearly 10 times greater than a “large” effect (i.e., f2 = .350; Aiken & West,
1991). The practical implication of such sizable interactive effects is that even
if conditions in research designed to detect moderating effects are favorable
with respect to one or more factors that affect the power of MMR, the
presence of an unfavorable level of one or more of the other factors that
influence power will result in power levels that are far below Cohen’s
recommended .80 standard.

In short, results of Aguinis and Stone-Romero’s (1997) Monte Carlo
simulation indicated that the power of MMR is influenced by main and
interactive effects of factors such as predictor variable range restriction, total
sample size, and the number of cases in each moderator-based subgroup. It
should be noted that in many research situations in education, psychology,
and management, range restriction may affect the distribution of predictor
scores (Hattrup & Schmitt, 1990), total sample size may be less than 100
(Russell et al., 1994), and the number of cases across levels of the hypothe-
sized moderator often differ markedly (Trattner & O’Leary, 1980). In these
common situations, failure to ascertain the presence of a dichotomous mod-
erator variable using MMR can be explained by one of two competing
hypotheses:

Hypothesis 1: The population moderating effect is equal to zero, or
Hypothesis 2: The population moderating effect is greater than zero but is not
detected due to low statistical power.

In light of these two hypotheses, researchers would benefit from being
able to estimate the power of MMR having knowledge of predictor range
restriction, total sample size, number of cases in each of the two moderator-
based subgroups, between-subgroup differences in the relationship between
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variables X and Y, and predictor-moderator intercorrelation. If the resulting
power estimate is greater than the recommended .80 level, MMR users could
rule out Hypothesis 2 and more confidently conclude that support has been
found for Hypothesis 1. Alternatively, if the resulting estimate is less than
.80, null results should be interpreted as representing inconclusive findings
and as an indication that further research with a greater level of power is
warranted (Westermann & Hager, 1986).

The Present Article

Aguinis, Pierce, and Stone-Romero (1994) developed a computer pro-
gram that provides estimates of the power to detect the effects of dichotomous
moderator variables using MMR. However, the Aguinis et al. program suffers
from three limitations: (a) It does not consider the effects of predictor range
restriction on the power of MMR, (b) it does not include interactive effects
between some factors known to affect the power of MMR (e.g., predictor
range restriction X moderating effect magnitude), and (c) it was developed
based on Stone-Romero, Alliger, and Aguinis’s (1994) equations that as-
sumed a linear relationship between methodological and statistical factors
and the empirically obtained power rates. It has been shown, however, that
the power function is nonlinear (McClelland & Judd, 1993).

To overcome these three aforementioned limitations, a revised and im-
proved computer program was developed. The program (a) includes the
effects of predictor range restriction, (b) considers the interactive effects of
methodological and statistical factors ascertained by Aguinis and Stone-
Romero (1997), and (c) is based on results of the Monte Carlo simulation by
Aguinis and Stone-Romero who, in contrast to Stone-Romero et al. (1994),
linearized the power function using an arcsin square root transformation
before regressing empirically obtained power rates onto values of the ma-
nipulated parameters.

The Program

The program was written in QuickBASIC (release 4.5) and runs on IBM
and IBM-compatible personal computers. It uses the intercept and b weights
from Aguinis and Stone-Romero’s (1997, Table 4) empirically derived
regression equation for predicting statistical power based on values for the
manipulated methodological and statistical artifacts:

Estimated Power = 1.082 + (.5338 X RR) + (.0025 x N) + (.9708 X py)
+(.0317 X Zyp) + (1.6527 X ES) + (1.212 X RR X ES) + (.001 X RR x N)
~ (102X RR X Zyz) + (.166 X RR X p1) + (006 x N ES) + 2.3 x ESx p) @
+ (.087 X ES X Zy7) + (.002 X N X py) + (.178 X Zyz X py),
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where RR is the range restriction ratio for predictor X (standard deviation in
sample / standard deviation in population), N is the total sample size, p, is
the proportion of cases in moderator-based Subgroup 1 (i.e., n; / N), Zyz is
the Fisher’s Z transformation of the sample-based correlation between the
predictor X and the moderator Z (i.e., ryz), and ES is the moderating effect
size (i.e., the absolute value of the difference between the Fisher’s Z trans-
formations of the sample-based correlations between X and Y for Subgroup
1 and Subgroup 2).

Before implementing the equation, the program centers the user-provided
values because the Aguinis and Stone-Romero (1997) equation is based on
centered predictors. Then, after the estimated power is computed, the pro-
gram implements an inverse of the arcsin square root transformation to the
obtained power estimate. This transformation is needed because it is the
inverse of the transformation used by Aguinis and Stone-Romero to linearize
the power function (Winer, Brown, & Michels, 1991, p. 356, case ii). Thus,
the obtained estimated power displayed by the program is expressed in the
typical proportion metric.

Finally, the program also computes a 95% confidence interval (CI) for the
statistical power point estimate. The 95% CI is computed by first obtaining
the standard error of estimate Sy-:

Sy'=Syxvl—R, 3

where Syis the standard deviation of the power values obtained in the Aguinis
and Stone-Romero (1997) simulation expressed in arcsin square root metric
(i.e.,.817),and R?is the squared multiple correlation coefficient for the model
reported by Aguinis and Stone Romero (i.e., .948, see Table 4). The lower
and upper limit values for the 95% CI around the point estimate are obtained
using Equation 4:

Point Estimate * Sy- X 1.96. )

As in the case of the point estimate, the lower and upper limits of the CI are
converted using the inverse of the arcsin square root transformation. Thus,
the program reports both the point estimate and its 95% CI in the typical
proportion metric.

Input

The user is prompted interactively to input (a) the sample-based correla-
tion coefficient between X and Y for moderator-based Subgroup 1 (rxyqy), (b)
the sample-based correlation coefficient between X and Y for moderator-
based Subgroup 2 (rxyw), (c) the sample-based correlation coefficient be-
tween the predictor X and the hypothesized moderator Z (ryz), (d) the sample
size for Subgroup 1 (i.e., ny), (e) the sample size for Subgroup 2 (i.e., n,), and
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(f) the sample and population standard deviations for predictor X (that are
used to compute RR). After entering these values, the program displays the
estimated power of MMR to detect a dichotomous moderator variable for the
specified conditions based on a nominal Type I error rate of .05.

Note that Equation 2 uses the value for p; and not the actual sample sizes
in the subgroups (i.e., n; and n,). Also, note that Aguinis and Stone-Romero’s
(1997) simulation used values of .1, .3, and .5 for p;. Accordingly, when
entering values into the present program, the user should always treat the
subgroup with the smaller n as Subgroup 1. In cases in which n, = n,, the user
can treat either subgroup as Subgroup 1.

Most of the aforementioned information needed by the program is easily
obtainable given that a researcher usually has access to the raw data. First,
information regarding N, n,, and n, is readily available. Second, rxyu) rxve)
and ryz are also easily obtainable using statistical software packages. Third,
the only potentially missing piece of information is predictor X range restric-
tion. Degree of predictor range restriction is typically available in personnel
selection research because variability information is known for the entire
pool of applicants and the subset of applicants who are selected (Aguinis &
Whitehead, 1997).

In situations in which the standard deviation for population X scores is not
readily available and, moreover, is presumed to differ from the standard
deviation in the sample, we recommend that MMR users obtain two power
estimates. The first estimate is computed assuming severe range restriction.
Using this severe RR figure, MMR users would obtain a conservative power
estimate. The range restriction figure can be obtained from previous studies
using similar populations or can be based on an educated (and conservative,
i.e., severe RR) guess. The second estimate is computed assuming no range
restriction (i.e., RR = 1.00, when the sample and population standard devia-
tions are equal) or some other RR figure considered liberal (i.e., moderate
RR). Using this second RR figure leads to a liberal power estimate. This
procedure provides MMR users with two power estimates, one (conservative
and lower) based on a more severe RR figure and the second (liberal and
higher) based on a more moderate RR figure. Thus, the resulting two values
represent the lower and upper limits of an interval that includes the estimated
power of MMR.

Output

Table 1 displays program-generated power values for situations consid-
ered typical in research studies aimed at estimating the moderating effects of
dichotomous moderator variables in education, psychology, and manage-
ment. For example, the median total sample size in a meta-analysis that
included 138 validation studies was 103 (Russell et al., 1994). Thus, Table 1
shows power values for situations in which N = 100.
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Table 1

Power Estimates to Detect the Moderating Effect of a Dichotomous Variable as a
Function of Moderating Effect Magnitude (difference in subgroup correlation coefficients),
Multicollinearity, Subgroup Sample Sizes, and Predictor Range Restriction

Power Estimates
rxy(]) rxy(z) Ir'xz ny ny No RR (1.0) Moderate RR (.6) Severe RR (.2)

2 4 R 50 50 17 13 .09
2 4 2 50 50 17 13 .09
2 .6 1 50 50 42 .30 .19
2 .6 2 50 50 43 .30 .19
2 8 1 50 50 .82 62 .39
2 8 2 50 50 .82 .62 40
2 4 1 40 60 .16 12 .08
2 4 2 40 60 .16 12 08
2 .6 1 40 60 .38 .26 .16
2 .6 2 40 60 38 .26 .16
2 8 1 40 60 74 52 30
2 .8 2 40 60 74 53 31
2 4 1 20 80 13 .10 07
2 4 2 20 80 13 .10 07
2 .6 1 20 80 28 .18 .10
2 .6 2 20 80 28 .18 .10
2 .8 1 20 80 .55 34 15
2 8 2 20 80 .56 34 .16

Note. rxy(1) = correlation between predictor X and criterion Y for moderator-based subgroup 1 (i.e., Z = 1);
rxy2) = correlation between predictor X and criterion Y for moderator-based subgroup 2 (i.e., Z=2); rxz =
correlation between predictor X and moderator Z (i.e., multicollinearity); n; = sample size of moderator-based
subgroup 1; n2 = sample size of moderator-based subgroup 2; RR = range restriction on predictor X.

As shown in Table 1, the statistical power of hypothesis tests of moderat-
ing effects using MMR is usually inadequate. For instance, unequal sample
sizes decrease the power of MMR quite notably. Note, however, that this
finding regarding the detrimental effects of unequal subgroup sample sizes
on statistical power is not new. The presence of unequal subgroup sample
sizes attenuates observed relationships not only in the context of MMR
(Stone-Romero et al., 1994) but also when computing other statistics such as
point-biserial correlations (Kemery, Dunlap, & Griffeth, 1988).

A perusal of Table 1 indicates that power levels rarely reach the recom-
mended .80 value. Moreover, for most situations presented in Table 1, the
power level is .50 or lower, which suggests that the rejection of false null
hypotheses regarding the effects of dichotomous moderator variables can be
predicted as accurately or more accurately by a flip of a coin. Given these
results, it is not surprising that social scientists express concerns that mod-
erators are elusive (Zedeck, 1971) and that further research should be
conducted to improve methods to detect hypothesized moderators (Cron-
bach, 1987).
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Finally, as a check of the accuracy of the program, we compared values
generated by the program with those reported by Aguinis and Stone-Romero
(1997, Tables 2-3). Results did not indicate any unexpected discrepancies.

Program Availability

The executable (MMRPWR.EXE) and source code (MMRPWR.BAS)
versions of the program are available at no cost on a 3.5-inch diskette. Users
who wish to obtain the program should send a blank formatted diskette and
a self-addressed, stamped envelope to Herman Aguinis, Ph.D., College of
Business and Administration, University of Colorado at Denver, Campus
Box 165, P.O. Box 173364, Denver, CO 80217-3364, USA. Alternatively,
the program can be sent electronically as an attachment file by e-mailing a
request to haguinis @castle.cudenver.edu or to capierce @montana.edu.
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