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Sampling Variance in the Correlation Coefficient Under Indirect Range
Restriction: Implications for Validity Generalization

Herman Aguinis and Roger Whitehead
University of Colorado at Denver

The authors conducted Monte Carlo simulations to investigate whether indirect range

restriction (IRR) on 2 variables X and Y increases the sampling error variability in the

correlation coefficient between them. The manipulated parameters were (a) IRR on X

and Y (i.e., direct restriction on a third variable Z), (b) population correlations pxv,

Pxz, and pvz, and (c) sample size. IRR increased the sampling error variance in r^y to

values as high as 8.50% larger than the analytically derived expected values. Thus, in

the presence of IRR, validity generalization users need to make theory-based decisions

to ascertain whether the effects of IRR are artifactual or caused by situational-specific

moderating effects.

Meta-analysis constitutes a set of procedures used to

quantitatively integrate a body of literature. Validity gener-

alization (VG) is one of the most commonly used meta-

analytic techniques in industrial and organizational (I&O)

psychology, management, and numerous other disciplines

(e.g., Hunter & Schmidt, 1990; Hunter, Schmidt, & Jack-

son, 1982; Mendoza & Reinhardt, 1991; Schmidt, 1992).

For example, Hunter and Schmidt estimated that VG
methods have been used in over 500 studies to investigate

the relationships between preemployment tests and job

performance measures. Because of its frequent implemen-

tation, VG has recently been characterized as one of the

three major meta-analytic approaches (Johnson, Mul-

len, & Salas, 1995).
VG extends arguments from psychometric theory to

assert that a substantial portion of the variability observed
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in an X- Y relationship across individual studies is the

result of sources of variance not explicitly considered in

a study design. Consequently, to better estimate an X-

Y relationship in the population, researchers should (a)

attempt to control the impact of these extraneous sources

of variance by implementing sound research designs and

(b) correct for the extraneous across-study variability by

subtracting it from the total observed variance in study-
level effect size estimates (Aguinis & Pierce, in press).

There is consensus that these extraneous sources of vari-

ance are typically not explicitly considered in a study's

design. However, there is an ongoing debate regarding

which sources of variance are artifactual in nature and

which are theoretically meaningful (James, Demaree, &

Mulaik, 1986; James, Demaree, Mulaik, & Mumford,

1988).
The sources known to increase across-study variability

in effect size estimates are (a) sampling error, (b) error
of measurement in the dependent variable, (c) dichotomi-

zation of a continuous dependent variable, (d) dichotomi-

zation of a continuous independent variable, (e) range

variation in the independent variable, ( f ) range variation

in the dependent variable due to attrition artifacts, (g)

deviation from perfect construct validity in the indepen-

dent variable, (h) deviation from perfect construct validity
in the dependent variable, (i) reporting or transcriptional
error, and (j) variance due to extraneous factors (Hunter &

Schmidt, 1990; Hunter et al., 1982; Schmidt et al., 1993).
However, despite that these factors have been identified,
their contribution to overall variability of rs across studies
usually accounts for not more than approximately 80.00%
to 90.00% of the total variance (e.g., Pearlman,
Schmidt, & Hunter, 1980; Schmidt, Hunter, Pearlman, &
Shane, 1979). In consequence, in recent investigations of
VG methodology, researchers have hypothesized that (a)
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already identified sources of extraneous variance may
cause more variability than is recognized (Law,

Schmidt, & Hunter, 1994b); and (b) there may be addi-
tional factors, not yet identified, which are possibly caus-
ing effect size estimates (e.g., rs) to erratically fluctuate
across studies (Schmidt et al., 1993). As an example of
the former, a recent Monte Carlo (MC) study conducted
by Millsap (1989) demonstrated that the sampling error
variance of rs across studies is typically much larger than
is suspected. More specifically, the results of Millsap's
simulation revealed that the sampling error variance of rs
affected by direct range restriction is larger than is esti-
mated by the traditional sampling error variance formula

(i.e., S'r = [1 - r2]2/[N - 1]). Consequently, the sam-
pling error variance is underestimated when rs are af-
fected by direct range restriction. Therefore, if direct
range restriction is caused by artifacts and not by theoreti-
cally meaningful moderator variables, a conclusion may
be reached erroneously regarding the existence of vari-
ability above and beyond sampling error, whereas in actu-
ality, across-study variability of rs is caused by (arti-
factual) predictor variable range restriction. Stated differ-
ently, the unexpected increase in r variability across
studies may artificially inflate Type I error rates regarding
the null hypothesis of a no-moderating effect. Moreover,
researchers may incorrectly conclude that validities vary
across various specific contexts and situations and, thus,
are not generalizable.

More recently, Schmidt et al. (1993) identified addi-
tional artifacts hypothesized to inflate the across-study
variability of rs. One of the factors identified by Schmidt

et al. is indirect range restriction (IRR). IRR is a common
phenomenon in I&O psychological research. In personnel

selection research, for example, applicants for a job are
initially selected on the basis of a cognitive abilities test
(predictor Z), such that only those with a score above
cutoff score z are selected. Then, as part of a criterion-
related validity study, the validity of a new Test X is evalu-
ated as a predictor of job performance (Y) and X is admin-
istered to a sample of current employees (i.e., incum-
bents) . Note that incumbents constitute a range-restricted
sample because they have already been selected on the

basis of Z scores. Thus, to the extent that Z scores are
correlated with the new predictor (X) and with job perfor-
mance (Y), direct selection on Zleads to IRR (also called
implicit, induced, or incidental range restriction) on both
X and Y. It deserves noting that direct range restriction
(e.g., on Z) and, consequently, IRR (e.g., on X and Y)

occur very frequently in contexts in which samples are
selected from larger pools of applicants (e.g., educational
and business organizations; Ghiselli, Campbell, & Zed-
eck, 1981, p. 295; Hunter & Schmidt, 1990, p. 209; Linn,
1983a, 1983b). Accordingly, Thorndike (1949) stated that
range restriction, "imposed by indirect selection on the

basis of some variable other than the ones being com-
pared, appears by far the most common and most im-

portant one for any personnel selection research pro-
gram" (p. 175).

Despite that IRR occurs frequently in I&O psychologi-
cal research, especially in such research areas as person-
nel selection and validation, there is no empirical evidence
to support Schmidt et al.'s (1993) contention that the
variability of effect sizes is larger than is estimated using
the traditional sampling error formula when rs are af-
fected by IRR. In addition, if such an increase exists, there
is a need to know its magnitude and practical significance
regarding the implementation of VG procedures. Accord-
ingly, the purpose of our study was to use an MC strategy
(Hartley & Harris, 1963; Noreen, 1989; Rubinstein,
1981) to examine (a) whether IRR increases the sampling
error variance in the correlation coefficient above its ana-
lytically expected value and (b) the extent to which the
sampling error variance estimator used in VG studies un-
derestimates sampling error variance in the presence of
IRR.

The MC strategy was used because it allows researchers
to overcome difficulties and complexities imposed by the
concurrent manipulation of several parameters, which of-
ten make the investigation of sampling distributions math-
ematically difficult or even intractable.

Method

Overview

MC simulations were conducted following a method similar

to that implemented by Millsap (1989). In the simulation, we

generated trivariate (X, Y, Z) arrays from multivariate normal

populations and assessed the impact of (a) severity of IRR on

X and Y (i.e., SR, the selection ratio on Z), (b) size of sample

(i.e., n), and (c) size of population correlations (pXY, pxz, and

PYZ), on the observed variance of empirically derived sampling

distributions of rXYs (i.e., Sl,a). Then, we computed the differ-

ence between the empirically derived or observed sampling error

variance S^ and the analytically derived or expected sampling

error variance 5jriv.

Manipulated Parameters

The following parameters were manipulated in the simulation.

IRR. We conducted an IRR on X and Y by restricting the

range on Z using a top-down procedure (see Simulation proce-

dure below). Range restriction on variable Z (i.e., SR) can be

easily converted to v, the restricted to unrestricted population

standard deviations (SDs) ratio (this mathematical equivalence

is possible because Z is normally distributed; see Table 1).

Because Z is correlated with X and Y, direct restriction on Z

causes IRR on X and Y. In the simulation, SR (see Table 1) took

on values ranging from 0.10 to 10.00, in increments of 0.10, to

represent conditions ranging from very severe range restriction

(i.e., SR = .1, sample scores represent the top 10.00% of the
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Table 1

Sample Sizes Corresponding to Selection Ratios for Each of

the Truncation Values n and Restricted to Unrestricted

Standard Deviations Ratios v

= (r2r3) +/- Vl - r i - (1)

SR 25 60 100

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.408
0.467
0.518
0.558
0.603
0.649
0.697
0.765
0.844
1.000

250
125

83
63
50
42
36
31
28
25

600
300
200
150

120
100
86
75

67
60

1,000
500
300
250
200
167
143
125
111
100

Note, v = 1 + [(z)(//SS)] - (//SR)1, where z is the standard normal
deviate corresponding to the selection ratio (SR) and/is the ordinate of
the standard normal density function at z (Schmidt, Hunter, & Urry,
1976).

population distribution of Z scores; v = .408, sample SD is

40.80% as large as the SD of the population distribution of Z

scores) to no range restriction (i.e., SR = 1.0, v = 1.000; sample

scores represent the full population range).

Note that all the study-level correlation coefficients are af-

fected by the same degree of IRR in each cell of the design.

This is not typical in VG studies in which the severity of IRR

is likely to vary from correlation coefficient to correlation coef-

ficient. However, our study is not intended to mirror the typical

VG study. To assess the estimation accuracy of sampling error

variance in the presence of IRR, we needed to hold the popula-

tion validity constant. Otherwise, error would be introduced in

the final results because the correction for the real variance in

true validities would not be perfectly accurate.

Sample size. Sample size n was set at values of 60, 100,

and 140. These values cover a fairly typical range in several

I&O psychology specialities, especially in personnel selection

research. For example, Lent, Aurbach, and Levin (1971) found

that the median sample size in 1,500 validation studies was 68.

More recently, Russell et al. (1994) conducted a meta-analysis

that included the 138 validation studies of personnel selection

systems published in the Journal of Applied Psychology and

Personnel Psychology between 1964 and 1992; he ascertained

that the median sample size was 103 (C. J. Russell, personal

communication, February 21, 1996).

Population intercorrelations. The correlations pxy, Pxz, and

ptz were set at values between 0.10 and 0.90, in increments of

0.10, to represent varying degrees of effect size.

Summary. The manipulation of the independent variables

led to a full factorial design with a total of 21,870 cells or

conditions, that is, 10 (SR) X 3 (n) X 9 (pxy) X 9 (pxz) X 9

(pvz). Note, however, that it is not possible to generate all

possible combinations of correlations ranging from 0.10 to 0.90

among three variables. After two correlations are specified, the

value of the third correlation has a limited range, as indicated

by the following equation (McNemar, 1962, p. 167):

For example, when the correlation between X and Z is 0.80

(e.g., r2) and the correlation between Y and Z is also 0.80 (e.g.,

r3), the correlation between X and Y (i.e., rO can only take on

values between 0.28 and 1 .00. Because of this design consider-

ation, the resulting number of combinations of parameter values

(i.e., cells) in our study was 19,422 (88.81% of the cells in the

hypothetical full factorial design).

Procedure and Dependent Variable

Computer programs. The simulation was performed using

FORTRAN programs incorporating the International Mathemat-

ical and Statistical Libraries (1989) subroutine RNMVN that

generates random normal scores under a user-supplied covari-

ance matrix (cf. Aguinis, 1994).'

Simulation procedure. Five thousand samples were gener-

ated for each of the 19,422 cells (i.e., combination of parameter

values) of the design. The simulation involved the following

three steps.

1. Trivariate (X, Y, Z) arrays of size N were generated from

multivariate normal populations with a mean of zero (i.e., /jx

= /uz = 0.00), unit variance (i.e., CT| = a\ <??. =
1.00), and correlations pxy, Pxz, and pYz.

2. The If generated trivariate arrays were sorted in descending

order on Z and truncated at the n th value. The ratio n/N provides

the SR. Identical to Millsap's (1989) procedure, the value of N

was systematically manipulated to give desired values of SR for

fixed values of n. Table 1, equivalent to Millsap's Table 1 (p.

457), shows arrays of size N corresponding to SRs for each

truncation value N, together with corresponding values of v (i.e.,

ratio of restricted to unrestricted SDs).

3. Correlations r^,, r*z, and /-yz were calculated from each

of the 5,000 samples generated for each cell in the design.

Dependent variable. To assess whether IRR on X and Y

spuriously inflates the analytically derived expected variance in

the sampling distribution of rXY s, we followed Millsap's ( 1989)

procedure and computed (a) the observed variance Slr^ from

observed (i.e., generated) sampling distributions of rxy s for

each cell in the design and (b) Fisher's (1921, 1954) expected

estimator S^rm (shown in Equation 2) based on the average of

5,000 estimators. The 5,000 estimators were computed based

on each of 5,000 rxy s generated for each cell in the design:

n - \
(2)

Subsequently, the difference between the observed and the ex-

pected variances (d) was computed for each of the 19,422 pa-

rameter value combinations:

L- O)

Key Accuracy Checks

To assess the key accuracy (i.e., validity) of the computer

programs, we first replicated Millsap's (1989) simulation and

1 Source code versions of the programs can be obtained from

Herman Aguinis.
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compared S ,̂ s and S\Tn s reported in his study with those gener-

ated using our newly developed computer programs. Values were

generated for each cell of his 9 (pxv) x 10 (SR) x 3 (n) full

factorial design. Note that Millsap used n values of 25, 60, and

100, which differ from the values of 60, 100, and 140 used in

our study. Thus, we also generated values for n = 25 to be able

to fully compare our results with Millsap's. Subsequently, we

computed the mean observed and expected variance for each

sample size condition. Then, we formally compared our results

with those reported by Millsap by conducting six independent-

samples t tests. Observed and expected variance means, discrep-

ancies, and t statistics are reported in Table 2. Values for the (

statistics were very small and in no case approached the .05

statistical significance level. Thus, we concluded that our com-

puter programs were valid, and we proceeded to the IRR-triva-

riate investigation.

Results and Discussion

In our simulation, we examined the effects of IRR on
the difference between observed and expected error vari-
ances (i.e., d) in the sampling distribution of rs under
various conditions of sample size and variable intercorre-

lations. Tables 3-5 show d values for factorial combina-
tions of pXY and SR collapsing across values of pxz and
PYZ, together with the percentage by which IRR increases
the sampling error variance in r above its analytically

derived expected value.
Table 3 shows the differences between observed and

expected variances ( d s ) for a sample size of 60. An exam-
ination of this table shows that (a) rfs are positive for all

conditions, (b) values of d increase as pXY decreases, and
(c) values of d increase as SR changes from no restriction
(SR = 1.0) to any level of restriction (SR * 1.0). Table
4, listing ds for n = 100, shows a similar pattern of
results. However, the impact of IRR is not as strong as
when n = 60. The same pattern of results is observed in
Table 5 (n = 140), with an even further overall decrease
in the values of d. Taken together, the findings presented in
these tables indicate that (a) the sampling error variance
estimator used in VG studies underestimates the true vari-
ance in r, even in the absence of IRR (i.e., SR = 1.0

conditions; Hunter & Schmidt, 1994); and (b) IRR accen-

tuates this underestimation even further, especially in situ-
ations of small sample and effect size.

Comparison of Effects of IRR and Direct Range
Restriction

Next, we compared the amount of sampling error vari-
ance underestimation in r under IRR with that under direct
range restriction. Note that IRR and direct range restric-
tion are independent processes. Direct range restriction
on X or Y can be present in the absence or presence of
IRR (i.e., direct range restriction on Z). Thus, both IRR
and direct range restriction may have an impact on the
variances of X and Y and, consequently, their correlation.
However, they can operate in isolation or concurrently.

To compare the relative effects of these two types of
range restriction, we contrasted our results with those
reported by Millsap (1989). Table 6 presents means for
d when SR < 1.0 (mean obtained from all levels of SR

* 1.0) and SR = 1.0 (no range restriction), collapsed
across the other manipulated parameter values for IRR
and direct range restriction situations.

Results reported in Table 6 show that our findings re-

garding the impact of IRR on the sampling variance in r

are virtually as strong as those reported by Millsap (1989)
regarding the effect of direct range restriction. Similarly,
both Millsap's simulation and ours demonstrate that (a)
the analytically derived expected sampling variance given
in Equation 2 is negatively biased and (b) this bias is
larger in restricted than unrestricted data. Likewise, we
also found that this bias increases as sample size de-
creases. Finally, note that we also generated data for n =

25 to compare our results with Millsap's. However, it
should be noted that such an unusually small sample size
deviates substantially from the typical sample size in to-
day's validation studies (i.e., n « 100).

Table 6 indicates that, for SR = 1.0(i.e.,no restriction),

our ds are slightly smaller than those reported by Millsap
(1989). This downward trend in our results is due to the

Table 2

Variance Means, Discrepancies, and t Statistics

Variance M Millsap Replication Discrepancy

25

25
60
60
100
100

Observed
Estimated
Observed
Estimated
Observed
Estimated

.0299363

.0272177

.0121137

.0114042

.0072179

.0068450

.0304002

.0273014

.0120363

.0114131

.0071974

.0068506

.0004638

.0000838
-.0000773

.0000089
-.0000200
.0000056

.2690

.0524
-.0109
.0127

-.0478

.0131

Note. Millsap = results from Millsap (1989); Replication = values obtained using our study's computer

programs; Discrepancy = replication variance — Millsap variance.

"p > .05, for all t statistics.
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Table 3

Values ofd (&„ - S2,rjfor n = 60

ftv

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

M

O.I

.00101
(7.71)
.00107

(7.95)
.00096

(6.75)
.00088

(6.25)
.00080

(6.57)
.00053

(5.60)
.00039

(4.93)
.00017

(4.55)
.00004

(5.07)
.00065

(6.25)

0.2

.00077
(5.67)
.00083

(5.91)
.00072

(4.97)
.00066

(4.67)
.00061

(4.97)
.00039

(4.09)
.00028

(3.44)
.00012

(2.79)
.00003

(2.76)
.00049

(4.36)

0.3

.00117
(7.88)
.00123

(8.19)
.00111

(7.38)
.00097

(6.94)
.00083

(6.84)
.00054

(5.81)
.00035

(4.98)
.00014

(4.04)
.00003

(3.70)
.00071

(6.19)

0.4

.00107
(7.16)
.00109

(7.11)
.00093

(6.03)
.00078

(5.29)
.00065

(4.94)
.00039

(3.75)
.00024

(2.82)
.00009

(2.04)
.00002

(1.60)
.00058

(4.52)

0.5

.00073
(4.87)
.00076

(4.87)
.00063

(4.03)
.00055

(3.71)
.00049

(3.76)
.00032

(3.15)
.00022

(2.99)
.00010

(2.71)
.00003

(3.20)
.00042

(3.69)

SR

0.6

.00048
(3.08)
.00048

(3.08)
.00039

(2.51)
.00034

(2.36)
.00032

(2.55)
.00021

(2.33)
.00015

(2.35)
.00007

(2.11)
.00002

(1.91)
.00027

(2.49)

0.7

.00110
(6.83)
.00108

(6.78)
.00095

(6.23)
.00079

(5.77)
.00063

(5.35)
.00041

(4.55)
.00025

(3.93)
.00010

(3.04)
.00002

(2.30)
.00059

(4.97)

0.8

.00080
(4.97)
.00080

(5.05)
.00072

(4.85)
.00061

(4.67)
.00049

(4.46)
.00033

(3.94)
.00020

(3.38)
.00008

(2.47)
.00001

(1.38)
.00045

(3.91)

0.9

.00027
(1.64)
.00026

(1.60)
.00020

(1.34)
.00017

(1.30)
.00016

(1.45)
.00010

(1.29)
.00006

(1.15)
.00002

(0.93)
.00000

(0.65)
.00014

(1.26)

1.0

.00041
(2.52)
.00033

(2.16)
.00023

(1.70)
.00016

(1.32)
.00010

(1.00)
.00005

(0.68)
.00002

(0.44)
.00001

(0.31)
.00000

(0.26)
.00014

(1.15)

M

.00078
(5.23)
.00079

(5.27)
.00068

(4.58)
.00059

(4.23)
.00051

(4.19)
.00033

(3.52)
.00022

(3.03)
.00009

(2.51)
.00002

(2.28)
.00045

(4.01)

Note. S1 ,̂ = observed sampling error variance in rxv; Slfxt = expected sampling error variance in rxv; SR = selection ratio on Z; n = sample
size. Values in parentheses show the percentage by which sfr-r is larger than i'J,m.

fact that our simulation design consisted of trivariate (as

compared to Millsap's bivariate) arrays and, thus, was

not a full factorial. Because, after two correlation values

are specified, values for the third correlation are limited,

our design was slightly unbalanced in that it included

more higher (i.e., closer to 0.90) than lower (closer to

0.10) values for pXY (cf. Equation I ) . Consequently, be-

cause d decreases as r increases, our values for d in the

Table 4

Values ofd (&„ - S2
e,J for n = 100

Px,

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

M

0.1

,00065
(8.38)
.00068

(8.55)
.00061

(7.09)
.00056

(6.38)
.00051

(6.63)
.00034

(5.42)
.00025

(4.59)
.00011

(4.05)
.00002

(4.90)
.00041

(6.22)

0.2

.00050
(6.18)
.00053

(6.35)
.00046

(5.07)
.00040

(4.40)
.00036

(4.37)
.00021

(3.17)
.00014

(2.26)
.00005

(1.79)
.00001

(0.92)
.00029

(3.83)

0.3

.00034
(4.23)
.00035

(4.07)
.00028

(2.93)
.00024

(2.43)
.00022

(2.52)
.00013

(1.83)
.00009

(1.48)
.00004

(1.65)
.00001

(2.82)
.00019

(2.66)

0.4

.00031
(3.58)
.00031

(3.43)
.00022

(2.31)
.00017

(1.60)
.00014

(1.33)
.00005

(0.41)
.00003

(-0.14)
.00000

(-0.31)
.00000

(0.74)
.00013

(1.44)

0.5

.00068
(7.27)
.00066

(7.05)
.00055

(5.98)
.00044

(5.22)
.00034

(4.71)
.00020

(3.59)
.00011

(2.73)
.00004

(1.87)
.00001

(1.88)
.00034

(4.48)

SR

0.6

.00064
(6.70)
.00064

(6.70)
.00055

(6.05)
.00046

(5.61)
.00037

(5.41)
.00024

(4.70)
.00015

(4.40)
.00006

(3.93)
.00002

(3.99)
.00035

(5.28)

0.7

.00063
(6.56)
.00060

(6.20)
.00048

(5.22)
.00037

(4.49)
.00027

(3.84)
.00015

(2.84)
.00008

(2.14)
.00003

(1.51)
.00001

(1.94)
.00029

(3.86)

0.8

.00018
(1.89)
.00018

(1.83)
.00014

(1.48)
.00011

(1.40)
.00010

(1.54)
.00006

(1.46)
.00004

(1.55)
.00002

(1.66)
.00001

(2.05)
.00009

(1.65)

0.9

.00041
(4.16)
.00040

(4.23)
.00036

(4.12)
.00030

(3.94)
.00023

(3.64)
.00015

(3.08)
.00008

(2.50)
.00003

(1.73)
.00001

(1.13)
.00022

(3.17)

1.0

.00001
(0.09)
.00002

(0.27)
.00004

(0.54)
.00005

(0.76)
.00005

(0.94)
.00004

(0.99)
.00002

(0.91)
.00001

(0.55)
.00000

(0.45)
.00003

(0.61)

M

.00043
(4.90)
.00044

(4.87)
.00037

(4.08)
.00031

(3.62)
.00026

(3.49)
.00016

(2.75)
.00010

(2.24)
.00004

(1.84)
.00001

(2.08)
.00024

(3.32)

Note. Slr^ = observed sampling error variance in rXY; 5 ,̂ = expected sampling error variance in rxv; SR = selection ratio on Z; n = sample
size. Values in parentheses show the percentage by which 5^yv is larger than S%fxi.
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Table 5

Values ofd (&„ - Sljfor n = 140

p™

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

M

0.1

.00019
(3.92)
.00022

(4.34)
.00020

(3.43)
.00020

(3.34)
.00021

(4.27)
.00015

(3.99)
.00012

(3.93)
.00006

(4.42)
.00001

(4.79)
.00015

(4.05)

0.2

.00028
(4.95)
.00030

(5.17)
.00026

(4.10)
.00023

(3.64)
.00022

(3.83)
.00013

(2.83)
.00009

(2.00)
.00003

(1.46)
.00001

(1.10)
.00017

(3.23)

0.3

.00033
(5.43)
.00034

(5.39)
.00027

(4.13)
.00022

(3.49)
.00020

(3.42)
.00011

(2.40)
.00007

(1.75)
.00003

(1.55)
.00001

(2.80)
.00017

(3.37)

0.4

.00027

(4.29)
.00030

(4.62)
.00026

(3.94)
.00024

(3.82)
.00022

(4.10)
.00012

(3.65)
.00010

(3.55)
.00005

(3.63)
.00001

(4.07)
.00018

(3.96)

0.5

.00024
(3.78)
.00024

(3.50)
.00018

(2.51)
.00014

(1.97)
.00012

(1.85)
.00006

(1.15)
.00004

(0.85)
.00002

(0.83)
.00001

(1.32)
.00012

(1.97)

SR

0.6

.00022
(3.26)
.00022

(3.17)
.00018

(2.59)
.00016

(2.42)
.00015

(2.66)
.00010

(2.42)
.00007

(2.50)
.00003

(2.56)
.00001

(3.04)
.00013

(2.74)

0.7

.00042
(6.10)
.00038

(5.57)
.00030

(4.51)
.00022

(3.59)
.00015

(2.83)
.00007

(1.73)
.00003

(0.95)
.00001

(0.39)
.00000

(0.99)
.00018

(2.96)

0.8

.00021
(2.93)
.00019

(2.65)
.00013

(1.92)
.00008

(1.34)
.00005

(0.96)
.00001

(0.34)
.00000

(0.08)
-.00000

(-0.19)
-.00000

(-0.02)
.00007

(1.11)

0.9

.00027

(3.89)
.00026

(3.83)
.00023

(3.57)
.00018

(3.31)
.00014

(3.14)
.00009

(2.65)
.00005

(2.26)
.00002

(1.81)
.00000

(1.40)
.00014

(2.87)

1.0

.00018
(2.59)
.00016

(2.45)
.00014

(2.29)
.00010

(1.95)
.00006

(1.56)
.00003

(1.04)
.00001

(0.42)
.00000

(0.05)
-.00000

(-1.54)
.00007

(1.20)

M

.00026
(4.11)
.00026

(4.07)
.00021

(3.30)
.00018

(2.89)
.00015

(2.86)
.00009

(2.22)
.00006

(1.83)
.00002

(1.65)
.00001

(1.80)
.00014

(2.75)

Note. Sl,a = observed sampling error variance in rm; S], = expected sampling error variance in r^,; SR
size. Values in parentheses show the percentage by which 5^ is larger than S2

er^.
selection ratio on Z; « - sample

absence of restriction suffer a slight negative bias as com-
pared with Millsap's results. This design consideration
strengthens the relevance of our study's results because
our estimates regarding the degree of negative bias in
the sampling error variance estimate in r obtained using
Equation 2 should be considered somewhat conservative.

Effects of Variable Intercorrelations

We also investigated the degree to which d values were
affected by the level of shared variance between the vari-

Table 6
Values ofd (£;;,„ - S2,,J Under Direct and Indirect
Range Restriction

Range restriction
and n

Direct (Mfflsap, 1989)
25
60
100
140"

Indirect (our study)
25
60
100
140"

Selection ratio

<1.0

.00283

.00075

.00040

—

.00224

.00048

.00027

.00015

1.0

.00174

.00035

.00016

—

.00146

.00014

.00003

.00007

able pairs Z-X and Z-K This shared variance can be
precisely expressed as S|XY, namely, the proportion of

variance in Z accounted for by variables X and Y (Pedha-
zur, 1982, p. 107):

(4)

" Millsap' s investigation of the effects of direct range restriction included
sample size of only 25, 60, and 100.

Under the condition of direct range restriction on Z,

IRR on X and Y increases to the extent that R | .XY increases
and, consequently, values of d should increase. To examine
this prediction, we plotted representative values of SR

(i.e., 0.1, 0.4, 0.7, and 1.0) with values of RZ.XY, Pxv, n,
and d in Figures 1-3.

A perusal of Figures 1-3 indicates that d values in-

crease as (a) RZXY (i>e., shared variance) increases, (b)
PXY decreases, and (c) SR shifts from 1.0 to any other
value (i.e., from no IRR to any level of IRR). These
effects are strongest in Figure 1 (n = 60) and smaller in
magnitude, yet still noticeable, as sample size increases
to 100 (Figure 2) and to 140 (Figure 3).

It should be noted that the three peaks for d values
shown in Figures 1—3, and more noticeable for n = 60,
are due to the facts that (a) larger values of /?|.XY were
found to increase d, (b) small values for pXY were found
to increase d, and (c) our design did not include all
possible combinations of correlations between variables
X, Y, and Z (cf. Equation 1). For example, Figure la
shows a value for d virtually reaching .005 for PXY = -30,
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a. Selection Ratio = .1 b. Selection Ratio = .4

Z.XY

c. Selection Ratio = .7 d. Selection Ratio = 1.0

Z.XY
Z.XY

Figure 1. Values for d as a function of selection ratio, validity coefficient (pxv), and shared
variance between the directly restricted variable (Z) and the two indirectly restricted variables
( X , Y; /?!.XY) for a sample size of 60.

and KZ.XY ** -97, correspond to pxz - PYZ = -80. No
other d value in the graph is close to reaching .005 because
no other combination of values for pxz arid pYz can yield
a comparably high RZ.XY № -97, given the constraint
shown in Equation 1 of pxy « .30 or lower. Consequently,
the next possible highest combination of values for
/?!.XY and pXY in the design are considerably lower and
so is the resulting d.

Conclusions and Implications

Primary-level as well as meta-analytic researchers are
concerned with the estimation of moderating effects (e.g.,

Aguinis, 1995; Aguinis, Bommer, & Pierce, 1996; Agu-
inis, Pierce, & Stone-Romero, 1994; Aguinis & Stone-
Romero, 1997; Stone-Romero, Ailiger, & Aguinis, 1994).
The results of our study lead to several meaningful conclu-
sions regarding the estimation of moderating effects in
the context of VG procedures.

First, as Schmidt, Hunter, and their colleagues have ad-
vocated for over 1 decade (Hunter & Schmidt, 1994; Law,
Schmidt, & Hunter, 1994a; Schmidt & Hunter, 1978), sam-
pling error variance in r computed using Equation 2 is
systematically underestimated in VG studies. Our MC sim-
ulations confirm that, even in the absence of IRR, the ana-
lytically estimated sampling variance computed using
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a. Selection Ratio = .1 b. Selection Ratio = .4

535

d

Z.XY 0.6 Z.XV

PXY
0.8'

c. Selection Ratio = .7 d. Selection Ratio = 1.0

Z.XY

Figure 2. Values for if as a function of selection ratio, validity coefficient (PXY). and shared
variance between the directly restricted variable (Z) and the two indirectly restricted variables
(X, Y; KZ.XY) for a sample size of 100.

Equation 2 has a systematic negative bias as compared
with the empirically computed sampling variance based on
the actual generated data. This underestimation may be
quite large under some conditions, especially as sample
sizes approach smaller values (e.g., 60) and effect sizes
are small (i.e., .50 or smaller, which can be considered to
be the typical range for validity coefficients in personnel
selection research). For instance, when n - 60, in the
absence of IRR, and when collapsing across all levels of
variable intercorrelations, the observed sampling error vari-
ance is 1.15% larger than the analytically derived (i.e.,
expected) variance. When /TXY = -20, in the absence of
ERR, and when collapsing across all sample sizes (i.e., 60,
100, and 140), the observed sampling error variance is
1.63% larger than the expected value computed in VG
studies.

Second, a new finding and unique contribution of our
study is the conclusion that IRR worsens the underestima-
tion of the VG sampling error variance estimator signifi-
cantly. In situations of IRR, the actual variance in r across
studies is underestimated even more radically when a (a)
sample size is smaller than 100 and approaches 60 (see
Figures 1-3), (b) true validity is .60 or smaller (see
Tables 3 - 5), and ( c) shared variance between the directly
restricted variable and the two IRR variables (i.e.,
RZ.XT) is approximately .75 (e.g., pxy = .60, pxz = -20,
and pyz = .80; see Figure 1). Also, the effects of IRR were
found to be comparable in magnitude with the effects of
direct range restriction. Finally, it should be noted that the
severity of IRR is not as important as the mere presence of
any degree of IRR.

To use a meaningful example, the concurrent presence
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a. Selection Ratio = .1 b. Selection Ratio = .4

Z.XY
0.4

0.6 Z.XY

PXY
0.8'

c. Selection Ratio = .7 d. Selection Ratio = 1.0

Z.XY
0.6

PXY
0.8'

Figure 3. Values far d as a function of selection ratio, validity coefficient (PXY). and shared
variance between the directly restricted variable (Z) and the two indirectly restricted variables
(X, Y; RZXY) for a sample size of 140.

of IRR (SR < 1.0), sample size of 60, true validity OXY)
of .60, pxz — .60, and pn — -60 yields an observed
sampling error variance in r 3.16% larger than the value
computed using Fisher's (1921, 1954) estimator. For the
same parameters and a sample size of 100, this difference
decreases to 2.34%; for a sample size of 140, it is further
reduced to 1.85%. Thus, the proportion of variance in r
due to FRR is always above zero, and this proportion
increases substantially as sample size approaches 60. As
a consequence of the increased sampling error variance
in the correlation coefficient caused by IRR and in the
absence of theory-based hypotheses regarding the impact
of IRR, researchers may incorrectly assume that this arti-
factual variance is due to potential moderator variables,
and, hence, false moderators may be "discovered."

In summary, Tables 3-5 show that when collapsing
across values of PXY, Pxz, and pTC, IRR artificially inflates
the variance in r up to a high percentage (» 8.50%).
Also, Tables 3-5 indicate that, even though the proportion
of variance increase is quite sizable for some conditions
(e.g., small sample size and moderate or smail effect
size), it is modest for others (e.g., large sample size and
large effect size). Thus, that the median sample size in
the validation research literature is larger now than 20
years ago (i.e., 103 vs. 68) is encouraging. Nevertheless,
because IRR-caused variability may be incorrectly attrib-
uted to nonsubstantive moderating effects and the situa-
tional specificity hypothesis may be incorrectly assumed
to be valid, the presence of IRR should not be ignored in
future VG endeavors. Moreover, researchers should con-
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sider a priori hypotheses regarding the presence of sub-

stantive moderator variables that may cause IRR.

Limitations and Research Needs

Our MC study used a rnultivariate random normal gen-
erator. Thus, even though complying with the (rnultivari-

ate) normality assumption is common practice in MC
investigations of VG and meta-analytic methods in general
(e.g., Callender & Osburn, 1981; Millsap, 1989), we ac-
knowledge that our study's results may not be generaliz-
able to situations in which this assumption is not tenable.

Second, our study ascertained the effects of IRR on the
sampling error variance in the correlation coefficient. This
is a new finding and unique contribution to the VG litera-

ture. However, the conclusions of this research leave VG
researchers in a perhaps uncomfortable situation. Unless
information is gathered regarding possible IRR in the pri-
mary-level studies used in a VG investigation, VG re-
searchers cannot establish whether unexplained variance
due to IRR is artifactual or caused by potential modera-
tors. To remedy this difficulty, at present, we can only
extend Hunter and Schmidt's (1990) recommendation that
primary-level researchers report as much information as
possible regarding their studies, so eventual quantitative
reviews can be as accurate as possible. This would include
not only the reporting of statistics to be used in a meta-
analysis but also the reporting of detailed procedures used
to collect the data, including information regarding IRR
and direct range restriction processes (e.g., Hattrup &
Schmitt, 1990).

We foresee at least two avenues for future research.
First, given our study's results regarding the impact of
IRR on the sampling variance in the correlation coeffi-
cient, it would be desirable that future researchers address
possible statistical corrections to prevent the negative bias
in S\,^ in IRR situations. Because direct restriction (prior

to IRR) can occur on more than one variable (i.e., a
cognitive abilities test, Z,, and a personality test, Zj),
future researchers should address the question of whether
these corrections should be (a) performed individually by
assessing the impact of each restricted Z variable or (b)
computed only once on the basis of the compound effect
of all Z variables. Research on range restriction correc-
tions by Ree, Carretta, Earles, and Albert (1994) demon-
strated that a rnultivariate correction does not yield the
same results as a series of univariate corrections. More
specifically, Lawley's (1943) rnultivariate correction re-
sults in corrected correlations that are closer to the speci-
fied population parameters as compared with correcting
a matrix one correlation at a time. Thus, Ree et al.'s
conclusion suggests that a rnultivariate correction is pre-
ferred. However, this recommendation relies on the fairly
restrictive assumption that a researcher has all the infor-

mation needed to implement it (e.g., restricted and un-
restricted SDs for all variables involved).

Second, if feasible, in the future researchers should
examine the extent to which IRR may have increased the
across-study variance in already published VG investiga-
tions that accounted for less than 100.00% of this variabil-
ity. Our study's results suggest that the presence of IRR
may have led researchers who did not have substantive a
priori moderating effect hypotheses regarding the effect
of IRR to the erroneous conclusion of the possible pres-
ence of unexplained moderating effects.

A Closing Comment

In closing, we urge researchers to consider the implica-
tions of IRR for the conduct of quantitative summaries of
research literatures. In the presence of IRR, variability
across study-level rs can be underestimated by as much
as 8.50%. In such IRR situations, researchers need to
make theory-based decisions to ascertain whether the ef-
fects of IRR are artifactual or caused by situational-spe-
cific moderating effects.
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