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Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperi-
mental designs. However, when covariates are fallible (i.e., measured with error), which is the norm,
researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that
covariates are perfectly reliable is violated but use ANCOVA anyway (and, most likely, report mislead-
ing results); (b) attempt to employ 1 of several measurement error models with the understanding that no
research has examined their relative performance and with the added practical difficulty that several of
these models are not available in commonly used statistical software; or (c) not use ANCOVA at all.
First, we discuss analytic evidence to explain why using ANCOVA with fallible covariates produces bias
and a systematic inflation of Type I error rates that may lead to the incorrect conclusion that treatment
effects exist. Second, to provide a solution for this problem, we conduct 2 Monte Carlo studies to
compare 4 existing approaches for adjusting treatment effects in the presence of covariate measurement
error: errors-in-variables (EIV; Warren, White, & Fuller, 1974), Lord’s (1960) method, Raaijmakers and
Pieters’s (1987) method (R&P), and structural equation modeling methods proposed by Sörbom (1978)
and Hayduk (1996). Results show that EIV models are superior in terms of parameter accuracy, statistical
power, and keeping Type I error close to the nominal value. Finally, we offer a program written in R that
performs all needed computations for implementing EIV models so that ANCOVA can be used to obtain
accurate results even when covariates are measured with error.

Keywords: measurement error, analysis of covariance, structural equation modeling, research design

Researchers use analysis of covariance (ANCOVA) to answer
research questions, test theories, and evaluate treatments while
implementing nonexperimental research designs. Adjusting treat-
ment effects for confounding variables in nonexperimental designs
is important for accurately determining the value and practical
usefulness of treatments, interventions, and programs (Arvey,
Cole, Hazucha, & Hartanto, 1985; Grant & Wall, 2009; Harwell,
2003; Maris, 1998; Schafer & Kang, 2008).

Equation 1 shows an ANCOVA model with one treatment
effect, �j, and a single covariate, xij, centered by the average
covariate value, x�:

yij � �� �j � ��xij � x�)�eij (1)

where yij is the dependent variable of interest for subject i in group
j, � represents the grand mean, eij is a residual, � measures the
effect of xij on yij, and using effect coding requires �j �j � 0. In
this article, we consider the case where j � 0 for the control group
and j � 1 for the treatment group and yij � N[� � �j � �(xij 	
x�), 
2]. Additionally, let �1x – �0x represent the degree of cova-
riate mean differences, or nonequivalence, between the treatment

and control groups on xij, and let �xx denote the reliability of xij. In
general, ANCOVA makes the following assumptions: eij are iden-
tically and independently normally distributed; the slope, �, is
equal across treatment and control groups; the relationship be-
tween yij and xij is linear conditioned on group membership (note
that a more general polynomial function of xij could be modeled as
well, as long as the shape of the curve is the same across groups);
and homogeneity of variance is satisfied across groups.

Another important assumption of ANCOVA is that covariates
are measured without error. In fact, controlling for fallible cova-
riates leads to biased treatment effects (Bartlett, 1949; Cochran,
1968; Elashoff, 1969; Fuller, 1987; Kahneman, 1965; Linn &
Werts, 1971; Lord, 1960; Madansky, 1959; Porter & Chibucos,
1975; Porter & Raudenbush, 1987; Raaijmakers & Pieters, 1987;
Ree & Carretta, 2006; Stanley & Robinson, 1990). Note that
covariate measurement error is only a problem for nonexperimen-
tal designs with groups that differ in average covariate values.
More precisely, covariate measurement error (i.e., �xx � 1) cou-
pled with group average differences on the covariate (i.e., �1x –
�0x 
 0), which arises in nonexperimental designs (Porter &
Raudenbush, 1987), leads to biased treatment effects.

Appendix A includes a derivation of the following equation for
computing the exact treatment effect bias when xij is fallible and
the null hypothesis of no treatment effect (i.e., Ho: �j � 0) is true:

�R�
2 �

�xy
2 �yy��1x � �0x�

2p�1 � p��1 � �xx�
2


x
2 � �xx��1x � �0x�

2p�1 � p�
. (2)

Specifically, Equation 2 represents the change in R2 associated
with the null hypothesis of no treatment effect after controlling for
the covariate when H0 is true. Also, note in Equation 2 that �xy is
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the true score correlation between xij and yij, 
x
2 is the variance of

xij, p is the proportion of subjects in the treatment group, and �yy

is the reliability of the dependent variable scores. Equation 2
shows that �R�

2 will be unbiased (i.e., �R�
2 � 0) when either �xx �

1 or �1x – �0x � 0 and reaffirms concerns about employing
ANCOVA in nonexperimental settings when xij is measured with
error and groups differ in covariate averages. Stated differently,
testing the null hypothesis of no treatment effect with standard F
critical values (i.e., F*) is inappropriate because F* does not
account for the biased effects when �xx � 1 and �1x – �0x 
 0
(Raaijmakers & Pieters, 1987). Moreover, using F* to test treat-
ment effects will frequently lead to incorrect statistical inferences
and inflated Type I error rates, which can lead to incorrect sub-
stantive conclusions such as concluding that a certain treatment
works when it actually may not. Appendix A also includes expres-
sions using Equation 2 to compute the real Type I error rate when
�xx � 1 and �1x – �0x 
 0.

We used equations in Appendix A to create Figure 1 to show the
exact degree of Type I error inflation across a set of illustrative
conditions. In Figure 1, a value of .05 represents a situation where
�r (i.e., real Type I error rate) equals � (i.e., nominal Type I error
rate). Figure 1 includes four panels with different values of �xy and
illustrates the degree of inflated Type I error rates as a function of
�1x – �0x and �xx and holding the sample size constant at 500. All
four panels in Figure 1 show that Type I error rates are severely
inflated as �xy and �1x – �0x increase and �xx decreases. For
instance, Panel B shows that Type I error rates are nearly four
times larger than the nominal level when �xy � 0.5, �1x – �0x �
0.5, and �xx � 0.7. The problem becomes even more severe for
larger values of �xy. For instance, as shown in Panel D, even a

small �1x – �0x value and small amounts of covariate measurement
error distort Type I errors when �xy � 0.9.

Previous research has proposed methods for correcting biased
treatment effects for covariate measurement error in nonexperi-
mental designs, and at least four methods have been developed in
the statistics and econometrics literatures: errors-in-variables
(EIV; Warren et al., 1974), Lord’s (1960) method, Raaijmakers
and Pieters’s (1987) method (R&P), and structural equation mod-
eling (SEM) methods proposed by Sörbom (1978) and Hayduk
(1996). However, we are not aware of any research that has
evaluated the relative merits of these approaches. Therefore, re-
searchers interested in using ANCOVA do not have guidelines
regarding which approach works best and under what conditions.
Accordingly, in the present study we implement Monte Carlo
simulations to evaluate the relative performance of existing ap-
proaches for adjusting treatment effects in nonexperimental de-
signs when the covariate is fallible.

The remainder of our article is organized into four primary
sections. The first section describes four competing methods for
addressing covariate measurement error. The second and third
sections describe results from two Monte Carlo simulations that
assess the relative accuracy (i.e., bias in estimating treatment
effects), statistical power, and Type I error rates of these compet-
ing methods. Specifically, the first simulation compares the per-
formance of the EIV, Lord method, R&P method, and sparse SEM
models (Hayduk, 1996) in cases where a single measure (i.e.,
observed indicator) of the covariate and dependent variable are
available. The second simulation study compares the EIV and the
SEM (i.e., Sörbom, 1978) approaches in cases where multiple
measures are available for the covariate and dependent variable.

Figure 1. Effects of group mean covariate differences (�1x – �0x), covariate reliability (�xx), and covariate
correlation with dependent variable (�xy) on real Type I error rate for the null hypothesis of no treatment effect
for a sample size of 500, nominal rejection level of 0.05, and equal proportions of subjects in treatment and
control groups (p � .5). Real Type I error rates were computed using equations in Appendix A.
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The last section includes a discussion of our results and implica-
tions for research and practice.

Summary of Methods for Addressing Biased
ANCOVA Results

Researchers have three inadequate options to deal with covariate
measurement error when implementing nonexperimental designs:
(a) pretend the problem does not exist, use ordinary least squares
(OLS) regression, and hope that results will be unbiased; (b)
employ a correction method without knowing which method leads
to more accurate results under which conditions; or (c) as some
have suggested (Porter & Raudenbush, 1987; Wicherts, 2005), not
use ANCOVA at all. In this section, we discuss four approaches
that have been proposed in the context of adjusting ANCOVA
effects in the presence of covariate measurement error. Specifi-
cally, we address EIV models (Fuller, 1980, 1987; Fuller & Hid-
iroglou, 1978; Warren et al., 1974), Lord’s (1960) method, the
functional R&P method described by Raaijmakers and Pieters
(1987), and SEM methods proposed by Sörbom (1978) and Hay-
duk (1996).

EIV Models

EIV models were developed and popularized by Fuller (1980,
1987). The attenuated OLS unstandardized coefficients are defined
by b � �XX

	1 �XY, where �XX is the estimated covariance matrix
among the independent variables and �XY is a vector of covari-
ances between the predictors and dependent variable. The disat-
tenuated EIV coefficients are estimated by �̃ � �xx

	1 �XY, where
�xx is the corrected covariance matrix among the independent
variables defined by �xx � �XX 	 [1 	 (K � 1)/n]Suu, and Suu

is the error covariance matrix and K is the total number of predic-
tors. If an estimate for the reliability of xi is available (the subscript
j is dropped from xij and yij in the remainder of the article for
simplicity), the error covariance matrix for the model in Equation
1 is defined by

Suu � � �1 � �xx�
x
2 0

0 0 �. (3)

Fuller (1987) noted that the variance–covariance matrix of the
disattenuated effects (i.e., ��̃�̃) is defined by

� �̃�̃ �
sv

2

n
�xx

	1
�

1

n
�xx

	1 �Suusv
2 � Suu�̃�̃�Suu � 2R̂��xx

	1 , (4)

where sv
2 � (Y 	 X�̃)�(Y 	 X�̃)/(n 	 K), which is a measure of

the conditional variance of the dependent variable, and R̂ �
diag(�̃�Suu J �̃�Suu), where J is a Hadamard operator that rep-
resents elementwise multiplication.

The Lord Model

Lord (1960) developed a large-sample method for correcting
ANCOVA treatment effects for covariate measurement error. Spe-
cifically, let Wxx, Wyy, and Wxy represent the pooled within-group
sums of squares and cross-products. The Lord model assumes

researchers have an estimate of covariate reliability derived from
parallel measurements. In this case, Lord wrote the error variance
of xi as 
�

2 � n	1(1 	 �xx)Wxx and the true score variance of xi as
ST

2 � n	1�Wxx, where � (see Lord, 1960, for more details about
computing �) is the pooled within-group reliability coefficient.
Lord derived approximations for the disattenuated slope coeffi-
cient (�Lord) and treatment effect (�Lord) as follows:

�Lord �
Wxy

nST
2�1 �

2ST
2
�

2

n�ST
2 � 
�

2�2�
and

�Lord � �Y� 1 � Y� 0�� �Lord�x�1 � x�0�. (5)

Lord also defined the error variance of Yi as 
ε
2 � n	1Wxx 	

�Lord
2 ST

2 and approximated the variance of the slope and treatment
effect as follows:


2��Lord��
ST

2�
ε
2 � �Lord

2 
�
2�� 
ε

2
�
2

nST
4 �

2�Lord
2 
�

4

n�ST
2 � 
�

2�2
and


2��Lord��
�
�

2 � �Lord
2 
�

2�n

n1n2
� 
2��Lord��x�1 � x�0�

2. (6)

Lord’s procedure uses a first-order approximation of the disattenu-
ated estimates and standard errors.

R&P Model

Raaijmakers and Pieters (1987) described a correction method
that is a functional measurement error model (Gleser, 1981; Mo-
ran, 1971) that does not assume a distribution for error variances.
Their R&P model is related to orthogonal regression and/or total
least squares in the statistics literature (Carroll & Ruppert, 1996;
DeGracie & Fuller, 1972). Raaijmakers and Pieters noted that their
model is more restrictive than the Lord model because the func-
tional model assumes that the measurement error variance for xi is
equivalent to the variance of the error in Yi. It is important to note
that the assumption in the functional model is violated every time
the reliability of xi differs from the proportion of variance ac-
counted for in the dependent variable, Yi. Consequently, we expect
the functional method to yield the least accurate corrections of the
models we evaluate. Although the R&P method has not been
examined empirically, we hypothesize that the R&P method will
be relatively more biased as the assumption of equal variances in
xi and Yi deviate, which occurs in our simulation as the covariate
becomes more reliable (i.e., �xx increases) and the treatment effect
size increases.

In the R&P model, the error variance is defined as


ε
2 �

�RP
2 Wxx � 2�RPWxy � Wyy

2n�1 � �RP
2 �

, (7)

where the formulas for the disattenuated slope coefficient and
treatment effect are

� �
Wyy � Wxx � ��Wyy � Wxx�

2 � 4Wxy
2

2Wxy
,
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�RP �
�

1 �
2
ε

2��1 � �2�� 2
ε
2�

n�1 � �2�ST
4

,

�RP � (Y� 1Y� ) � �RP(x�1 � x�), and (8)

ST
4 � n	1Wxx � 2
ε

2.

Approximate estimates for the variances of the slope and treatment
effects are


2��RP��

ε

2��1 � �RP
2 �ST

2 � 
ε
2�

nST
4


2��RP�� n	1
ε
2�1 � �RP

2 �� 0.25
2��RP��x�1	x�0�
2. (9)

SEM Approaches: Sörbom’s (1978) Method and
Hayduk’s (1996) Sparse SEM Model

Sörbom (1978) developed a multigroup SEM to adjust AN-
COVA treatment effects for covariate and dependent variable
measurement error. Specifically, let g index the gth group and y(g)

and x(g) represent matrices of observed measures of latent vari-
ables �(g) and �(g). Sörbom discussed an approach for estimating
the disattenuated effects as

y�g� � �y � �y�
�g� � �y

�g�,

x(g) � �x � �x�
�g� � �x

�g�, and

��g� � ��g� � ��g���g� � ��g�, (10)

where the equations for y(g) and x(g) represent measurement mod-
els where �y and �x are vectors of means and �y and �x are
loadings. Additionally, �(g) is the adjusted mean for group g, �(g)

is the relationship between the latent covariate and dependent
variable for group g, and �(g) is the error term for group g. Sörbom
noted that in the case of two groups, the treatment effect is
computed as �(1) 	 �(2). Sörbom also presented equations for
finding maximum likelihood estimates and noted that standard
SEM software can be used to estimate the effects in Equation 10.

Hayduk (1996) discussed the use of sparse SEM models that
include single rather than multiple indicators. Sparse SEM models
require researchers to fix parameters in the measurement model. In
Study 1, we estimated Sörbom’s (1978) model as described in
existing SEM software documentation (Arbuckle, 2008) with fixed
parameters in the measurement model to understand the perfor-
mance of sparse SEM models for estimating treatment effects.
Specifically, we used the simulated covariate reliability to fix the
covariate factor loading, or theta, as described by Hayduk.

Previous Comparative Research on the EIV, OLS,
Lord Method, R&P, and SEM

Previous research has used simulations to understand the per-
formance of the OLS for conducting ANCOVA. For example,
Overall and Woodward (1977) and Cappelleri, Trochim, Stanley,
and Reichardt (1991) conducted several simulations to understand

the role of fallible covariates on estimated treatment effects. Over-
all and Woodward and Cappelleri et al. found inflated Type I error
rates for tests of treatment effects and substantial bias in the OLS
estimated treatment effect when groups were not equivalent (�1x –
�0x 
 0), and the covariate was measured with error (�xx � 1).

Some previous research studied the relative performance of the
R&P (i.e., orthogonal regression), SEM, and OLS, as well. For
example, previous research found evidence to prefer the R&P over
the OLS in linear and nonlinear models (Boggs, Spiegelman,
Donaldson, & Schnabel, 1988) and models that include the EIV
(Ketellapper, 1983). Whereas previous research examined orthog-
onal regression, we are not aware of any research that specifically
studied the viability of R&P for estimating treatment effects.
Similarly, Cribbie and Jamieson (2000) examined the relative bias
of OLS and SEM treatment effect estimates but did not compare
these methods with other estimators, such as the Lord method,
R&P, or EIV. Moreover, we were unable to find any simulations
comparing the OLS with the Lord method. Consequently, the
studies described in the present article are the most extensive and
comprehensive simulations on ANCOVA and measurement error
in terms of the number of competing models and parameters
investigated.

Study 1

Our first Monte Carlo simulation examined the effects of cova-
riate measurement error on the accuracy of the OLS regression,
EIV, Lord model, R&P model, and sparse SEM model. Factors
manipulated included sample size, treatment effect size, covariate
reliability, group mean differences on the covariate, and proportion
of the sample in the treatment group. We investigated a wide range
of values for each of these factors and their effects on the bias of
treatment effects, statistical power, and Type I error rates. The
parameter values included in our simulation were specifically
chosen to include the range of values observed by applied re-
searchers. Next, we describe the manipulated parameters and their
values, data generation procedures, dependent variables, key ac-
curacy checks, and simulation results.

Manipulated Parameters and Data
Generation Procedures

The simulation estimated 3,500 unique combinations of the
parameter values with 5,000 replications for each combination.
Table 1 includes the values for each manipulated parameter, in-
cluding four values of �xx (ranging from .6 to .9) and five values
of n (ranging from 100 to 1,000). The unique effect of the treat-
ment beyond the covariate (denoted by ��G

2 ) was manipulated and
took on seven different values. That is, ��G

2 equaled 0 to .03 in
increments of .005 and represents the change in R2 associated with
adding the treatment effect to a model with the covariate. The
simulation also manipulated the proportion of subjects in the
treatment group (p) and true group mean differences on Xi (�1X –
�0X). Table 1 shows that we included five values of p (ranging
from .1 to .9) and five values of �1X – �0X (ranging from –1 to 1).

We used the following equation to generate observed covariate
scores (Xi) with true group mean differences between the control
and treatment groups represented by �1X – �0X:
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Xi � ��1X � �0X��Gi � p� � �1 � �XG
2 eXi, (11)

where �XG is the point biserial correlation between Xi and Gi

(where Gi is 1 for the treatment and 0 for the control group) defined
by �XG � �p�1 � p���1X � �0X� and eXi is a standard normal
random variable. Observed covariate scores (xi) were created by
introducing random measurement error (exi) using the following
equation:

xi � ��xx Xi � �1 � �xx exi. (12)

The dependent variable, Yi, was generated as a standard normal
random variable using the following equation:

Yi � �xy Xi � ��G

Gi � p

�p�1 � p�
� �1 � �xy

2 � ��G
2 eYi,

(13)

where ��G
2 is the unique treatment effect, �xy is the true correlation

between Xi and Yi, and eYi is a standard normal random variable.
Note that the Gi is centered by p (the proportion of subjects in the
treatment group) and divided by the standard deviation to ensure Yi

has a mean of zero and variance of one.
We conducted the Monte Carlo simulation using Indiana Uni-

versity’s Big Red supercomputer, which is a distributed shared-
memory cluster consisting of 1,024 IBM JS21 Blades, each with
two dual-core PowerPC 970 MP processors, 8 GB of memory, and
a PCI-X Myrinet 2000 adapter for high-bandwidth, low-latency
message-passing interface applications. Big Red has a theoretical
peak performance of more than 40 teraflops (i.e., more than 40
thousand billion floating-point operations a second) and uses a
SuSE Linux Enterprise Server operating system. We wrote all
programs in R (Culpepper & Aguinis, in press; R Development
Core Team, 2008), and they are available from the authors upon
request.

Dependent Variables

The dependent variables were relative bias for the treatment
effect and Type I error and statistical power rates for the null
hypothesis of no effect (i.e., Ho: �j � 0). Relative bias was
computed as the average of the absolute value difference between
the observed (i.e., sample-based) and true (i.e., population) treat-
ment effect. Note that the population treatment effect was gener-
ated as ��G/�p�1 � p� in Equation 13. Additionally, Type I error
and power rates were computed as the proportion of statistically
significant estimates out of the 5,000 simulated replications for
different combinations of parameter values. Specifically, Type I
error rates were proportions for design cells for which ��G

2 � 0
and statistical power rates were proportions for design cells for
which ��G

2 � 0.

Key Accuracy Checks

We computed theoretical values for �R�
2 and compared them

with the empirical values using the OLS regression from the
Monte Carlo simulation, and differences were not larger than
expected due to sampling error alone. Specifically, the median
absolute valued difference between the empirical and theoretical
�R�

2 values was .000003, and in no cell in the simulation design
were differences larger than .0003. Thus, these results provide
evidence in support of the validity of the data generation proce-
dures.

Results

We conducted three analyses of variance (ANOVA) for the
comparison of the relative bias, power, and Type I error among
five methods we evaluated in Study 1: the OLS regression, EIV,
Lord method, R&P, and sparse SEM. Specifically, each of these
three ANOVAs included main effects for the following factors:

Table 1
Summary of Simulation Parameters and Parameter Values

Parameter Study 1 values Study 2 values

��G
2 0, .005, .010, .015, .020, .025, .030 0, .005, .010, .015, .020, .025, .030

�xx .6, .7, .8, .9
n 100, 250, 500, 750, 1,000 250, 500, 750
�1X 	 �0X 	1.0, 	.5, 0, .5, 1.0 	1.0, 	.5, 0, .5, 1.0
p .1, .3, .5, .7, .9 .1, .3, .5, .7, .9
�x .3, .4, .5, .6
�y .3, .4, .5, .6
K 2, 4, 6, 8
L 2, 4, 6, 8

Note. In Study 1, �yy (i.e., criterion reliability) was held constant at 1.0 (�yy was determined by �y and L in
Study 2). In both Studies 1 and 2, �xy (i.e., covariate–dependent variable correlation) was held constant at .5.
Study 1 included 3,500 unique permutations of parameter values that were each replicated 5,000 times. Study
2 included 134,400 unique permutations that were replicated 1,000 times. ��G

2 � unique effect of the treatment
beyond the covariate; �xx � covariate reliability; �1X – �0X � average difference in standard deviation units
between treatment group and control group (i.e., the predictor, Xi, was standardized with a mean of zero and
variance of one); p � proportion of the sample in the treatment group; �x and �y � loadings for observed
measures of Xi and Yi, respectively; K and L � number of observed measures (i.e., indicators) of Xi and Yi,
respectively.
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statistical approach (i.e., the OLS, EIV, Lord method, R&P, or
SEM), sample size (n), proportion of sample in treatment group
(p), true group mean differences on the covariate (�1X – �0X), and
covariate reliability (�xx), in addition to interactions between the
statistical approach factor and each of the other aforementioned
design characteristics. This section includes three subsections de-
voted to the results for bias, power, and Type I errors. Full
ANOVA tables for each of the three sets of analysis can be
obtained from the authors upon request.

Comparison of relative bias. Figure 2 includes five panels
with results for absolute-value relative bias (i.e., absolute valued
difference between estimated and true treatment effects divided by
true effects) of each approach by study design characteristic. The
ANOVA using bias as the dependent variable provided evidence
that all of the manipulated factors contributed to differences in bias
except for sample size and the interaction between statistical
approach and sample size (e.g., Panel A of Figure 2 displays
results showing no main or interaction effect associated with
sample size). Additionally, with the exception of sample size, all of
the main effects and interactions were statistically significant at the
.001 level. However, some of the effects were substantively small
(e.g., the �2 associated with the main effects for p, �xx, and
��G/�p�1 � p� were less than 2%).

ANOVA results provided evidence that statistical approach had
the largest effect on treatment effect bias out of all the manipulated
factors (i.e., �2 � .56). In fact, the five panels in Figure 2 show
that, overall and across all conditions, the OLS and R&P produced
the most biased estimates and the EIV and Lord method produced
the least biased estimates. OLS performed just as expected on the
basis of the derivations included in Appendix A. Specifically, the

OLS estimates were more biased as the covariate became less
reliable (see Panel C of Figure 2), group differences deviated from
zero (see Panel D), and p approached .5 (see Panel E). The R&P
estimates were the least accurate of the methods. This result is
likely due to the violation of the assumption of equal error vari-
ances in xi and Yi, as is the case in typical psychological research.
For instance, the R&P method was more biased as the error in Yi

decreased due to increases in the treatment effect (see Panel B) and
as measurement error in xi decreased (see Panel C). Although the
sparse SEM model produced less biased treatment effects than did
the OLS and R&P, it was less accurate than the EIV and Lord
method. In fact, the SEM produced estimates that were biased by
9.4% on average across the 3,500 conditions, and Figure 2
shows that the SEM yielded treatment effect estimates that
differed from true effects by 15.8%, 11.3%, 7.2%, and 3.5%
when covariate reliability was 0.6, 0.7, 0.8, and 0.9, respec-
tively. In contrast, the relative bias for the EIV was 2.1%, 1.9%,
1.9%, and 1.8% when covariate reliability was 0.6, 0.7, 0.8, and
0.9, respectively, which suggests that the SEM was more biased
than the EIV when �xx � 0.9.

Because results regarding relative bias demonstrate the superi-
ority of the EIV, Lord method, and SEM, next we present results
regarding statistical power and Type I error rates for these three
statistical approaches only (and not for the OLS and R&P).

Comparison of relative statistical power. This section ex-
amines the simulation results for all combinations of the parameter
values for conditions where �R�

2 (i.e., unique effect of the treat-
ment beyond the covariate) was greater than zero. ANOVA results
using statistical power as the dependent variable indicated that all
of the main effects and interactions with statistical approach (i.e.,

Figure 2. Simulation results for bias of ordinary least squares (OLS), errors-in-variables (EIV), Lord’s (1960)
method, Raaijmakers and Pieters’s (1987) method (R&P), and sparse structural equation modeling (SEM) as a
function of sample size, treatment effect size, covariate reliability, group mean differences, and proportion of
subjects in the treatment group.
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the Lord method, EIV, or SEM) affected statistical power. In fact,
statistical approach and sample size (e.g., see Panel A of Figure 3)
had the greatest effects on statistical power. That is, the EIV
offered a significantly more powerful test of treatment effects than
did the Lord method, although, as expected, power increased as
sample size increased for both approaches. Additionally, the EIV
also had a statistical power advantage over the SEM. Specifically,
the EIV was more powerful than the SEM across sample sizes,
treatment effect sizes, covariate reliability, and proportion of the
sample in the treatment group. However, the SEM had a slight
advantage in power over the EIV when groups differed by one
standard deviation in covariate means.

Additionally, the main effects for �1X – �0X (see Panel D of
Figure 3) and �xx (see Panel C) were substantively small, and
statistical approach only slightly interacted with n, �1X – �0X, �xx,
and ��G/�p�1 � p� (see Panel B). In contrast, statistical approach
interacted with the proportion of subjects in the treatment group.
Specifically, statistical power associated with the Lord method
declined as p increased, whereas the power of the EIV remained
fairly constant (see Panel E).

In summary, results indicate that the EIV is superior to the Lord
method and the SEM in terms of statistical power despite the fact
that the three approaches produced estimates with relatively sim-
ilar accuracy, as shown in the previous section. The discrepancy in
power between the EIV and the other two methods is likely
attributed to the fact that the approximated standard errors for
treatment effects in the Lord method and the SEM are inflated,
whereas the standard errors for the EIV derived by Fuller (1980,
1987) are more accurate. In fact, the average statistical power for
the EIV across all of the values of the manipulated parameters was
nearly twice as large (i.e., .67) as the power for the Lord method

(i.e., .28). The EIV was often more powerful than the SEM but
never by more than 10% in typical cases (e.g., the average power
of the SEM across all manipulated parameters was .612), so the
SEM appears to yield more accurate standard errors than does the
Lord method.

Comparison of Type I error rates. This section compares
the Type I error rates of the EIV, SEM, and Lord method for
conditions where �R�

2 (i.e., unique effect of the treatment beyond
the covariate) equaled zero. ANOVA results using Type I error
rates as the dependent variable indicated that statistical approach
had the greatest effect on Type I error rates, followed by the main
effect of p and the interaction between statistical approach and p
(see Panel D of Figure 4). The four panels in Figure 4 suggest that
the EIV effectively controlled Type I error rates at the nominal
level set at .05. In contrast, the Lord method offered a conservative
test. Furthermore, whereas the SEM did a better job of controlling
the Type I error rate than did the Lord method, the Type I error rate
of the SEM was affected by sample size, covariate reliability,
group mean differences on the covariate, and the proportion of
sample in the treatment group.

In summary, the simulation results regarding Type I error rates
indicate that the Lord method offers a test of treatment effects that
is overly conservative because Type I error rates are biased down-
wardly due to less-accurate standard errors. For example, Panel D
of Figure 4 shows that the Lord test is more conservative for larger
values of p, which, coupled with the results shown in Panel E of
Figure 3, suggests that the standard errors associated with the Lord
estimated treatment effect become increasingly inaccurate as p
increases. Additionally, across all conditions, the average Type I
error rate was .048 for the EIV, .007 for the Lord method, and .033
for the SEM, which suggests that the Lord method suffers from

Figure 3. Simulation results for statistical power (i.e., probability of detecting an existing effect) of errors-in-
variables (EIV), Lord’s (1960) method, and structural equation modeling (SEM) as a function of sample size,
treatment effect size, covariate reliability, group mean differences, and proportion of subjects in the treatment group.
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deflated Type I error rates, whereas the EIV is able to control Type
I error at the prespecified nominal level, and the SEM tended to be
slightly more conservative.

Study 2

The goal of the second study was to compare the performance of
the EIV and SEM in terms of bias, control of Type I error rates,
and statistical power. This study focuses on the EIV because this
was the approach that outperformed all others on the basis of Study
1. Also, this study focuses on the SEM because of its ability to
incorporate multiple indicators for both the covariate and the
dependent variable and, hence, its ability to potentially address
identification issues. Study 2 did not examine the performance of
the Lord method in the presence of multiple indicators because this
approach is limited to pre- and postdesigns, where researchers
control for only a single fallible covariate. In other words, the Lord
method is not capable of adjusting treatment effects when more
than one fallible covariate is used to control for group differences.
In contrast, both the EIV and the SEM can be used in the presence
of multiple covariates, and therefore they are more applicable in
circumstances more typical in research in psychology and related
fields.

Manipulated Parameters and Data
Generation Procedures

The true covariate and dependent variable scores were generated
using Equations 11 and 13. We conducted key accuracy checks

that were similar to those in Study 1 and also generated the data
using Indiana University’s Big Red supercomputer. In contrast to
the procedure in Study 1, in Study 2 we manipulated the number
of observed covariate and dependent variable measures (i.e., indi-
cators). Specifically, the observed measures for Xi and Yi were
generated using the following equation:

xik � �xXi � �1 � �xk
2 ex1k and

yil � �yYi � �1 � �yl
2 eyil, (14)

where xik and yil are the kth and lth observed measures of Xi and
Yi, respectively, and k � 1, . . ., K and l � 1, . . ., L. Additionally,
�x and �y are loadings, and exik and eyil are standard normal error
terms. �x and �y were constant across the K and L observed
measures for Xi and Yi, respectively.

Table 1 includes the parameter values used in Study 2. Specif-
ically, Study 2 examined 134,400 unique combinations of param-
eter values and generated 1,000 replications for each combination.
Also, Table 1 shows that �x and �y equaled one of four values (i.e.,
.3, .4, .5, or .6) and that the number of observed measures equaled
one of four values (i.e., 2, 4, 6, or 8).

We implemented the SEM approach using Sörbom’s (1978)
model as described earlier. The EIV was implemented by creating
total scores of the indicators for Xi and Yi. Cronbach’s alpha was
computed from the K xik and L yil. The estimated Cronbach’s alpha
for the K xik was used to compute �xx, and the square root of the
estimate of internal consistency was used to disattenuate the co-
variance between the total score for the covariate and dependent
variable.

Figure 4. Simulation results for Type I error rates (i.e., probability of rejecting a true null hypothesis of no
effect) of errors-in-variables (EIV), Lord’s (1960) method, and structural equation modeling (SEM) as a function
of sample size, covariate reliability, group mean differences, and proportion of subjects in the treatment group.
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Results

As in Study 1, we conducted an ANOVA using bias, statistical
power, and Type I error rates as the dependent variables. ANOVA
results indicated a high degree of consistency regarding each of
these dependent variables across the two approaches in that the
EIV demonstrated superior performance. So, given that the results
regarding power and Type I error rates were consistent, we report
only results related to relative bias of the two procedures. Addi-
tional figures illustrating results regarding power and Type I error
rates are available from the authors upon request.

Figure 5 includes six panels that plot the relative bias of the EIV
and SEM in the case where more than one covariate and response
indicators are available. Note that to simplify the graphs, we
created Panel C with only cases where the loadings for Xi and Yi

were equal; similarly, we created Panel F using conditions where
the number of indicators for Xi and Yi were equal. The full
ANOVA table and additional graphs are available from the authors
upon request.

Figure 5 illustrates the ANOVA results that only the magnitude
of factor loadings (see Panel C) and the extent of group mean
differences (see Panel D) affected the relative bias of the EIV and
SEM estimates. In contrast, the main effects for sample size,
treatment effect size, proportion of treatment group, and number of
indicators were not statistically significant. Panels A, B, E, and F
show that the SEM produced treatment effect estimates that were
smaller than the true value by approximately 30% across values of
sample size, treatment effect size, proportion of treatment group,
and number of indicators for Xi and Yi. In contrast, Panels A, B, E,
and F show that the EIV estimates were essentially unbiased. Panel
C shows that the EIV estimates were unbiased across factor
loading values whereas the SEM produced less-biased estimates as

the factor loadings increased. Panel D shows that the EIV esti-
mates were less biased in situations where group mean differences
on the covariate were small and more biased when groups differed
in covariate mean differences. In summary, results of Study 2
provide evidence that the EIV yields more accurate treatment
effect estimates compared with the SEM.

General Discussion

Given the pervasive use of ANCOVA to address important
theoretical and practical issues in psychology and related fields, the
present study makes both methodological and substantive contri-
butions. From a methodological perspective, previous research has
documented biases in ANCOVA treatment effects when fallible
covariates are included in the model in nonexperimental designs.
The present article provides new formulas describing the exact
degree of bias under various conditions and the underlying mech-
anisms that lead to inflation in Type I error rates and subsequent
erroneous substantive conclusions. This analytic material can be
used by future researchers to attempt to replicate past studies
(either for single studies or in a meta-analytic fashion) that may
have committed Type I errors and reported possibly nonexistent
treatment effects. Specifically, researchers would need to collect
the necessary information on the sample (e.g., group mean differ-
ence, sample size, covariate reliability, proportion in the treatment
group) and apply the equations included in Appendix A.

Additionally, the Monte Carlo simulations offer new and com-
prehensive knowledge about the relative performance of existing
methods for disattenuating parameter estimates in the presence of
fallible covariates. An important implication for substantive re-
searchers and for practitioners is that EIV models are superior
compared with their competitors (namely, the SEM, Lord, and

Figure 5. Simulation results for relative bias of errors-in-variables (EIV) and structural equation modeling
(SEM) for multiple covariate and response variable indicators and different sample size, treatment effect size,
factor loadings, group mean differences, proportion of treatment group, and number of X, Y indicators.
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R&P models). In particular, EIV methods produce accurate esti-
mates of the true treatment effects, have greater levels of statistical
power, and provide a better control of Type I error rates. Unfor-
tunately, researchers may not have access to statistical software to
implement EIV methods; in fact, Stata (StataCorp, 2009), which is
primarily used by applied economists, is the only widespread
program that to our knowledge is able to conduct EIV analysis.
Thus, Appendix B includes a program written for R, which is an open
source statistical software package (Culpepper & Aguinis, in press),
that researchers can download for free and use to accurately assess
treatment effects. Also, to avoid the need to retype it, this program can
be downloaded from http://math.ucdenver.edu/~sculpeppe/EIV.R or
http://mypage.iu.edu/~haguinis/eiv.html

We acknowledge some limitations of our study that also serve as
impetus for future research. First, our simulation examined load-
ings that were constant for all covariate and dependent variable
indicators. It is possible that the SEM is superior to the EIV in
cases where loadings differ. Consequently, additional research is
needed to understand the impact of nonconstant loadings on the
relative performance of the methods examined in this study. Sec-
ond, we used Cronbach’s alpha to correct EIV estimates in the case
of several indicator variables. However, internal consistency, or
lack thereof, is only one of several sources of measurement error
(Aguinis, Pierce, & Culpepper, 2009; Le, Schmidt, & Putka,
2009). Thus, it is possible that the SEM performs better than the
EIV in situations where alpha provides a less-accurate estimate of
reliability, and this issue can be investigated in future research.

Concluding Remarks

In conclusion, the primary goal of this study is to assist research-
ers in addressing substantive questions by implementing more
accurate data-analytic procedures. In addition to its value in terms
of basic research, ANCOVA is often used to assess treatment
effects that may consist of determining the value and/or merit of
programs, interventions, or organizational and social initiatives
(Arvey et al., 1985). Current applications of ANCOVA make it
difficult to accurately assess and evaluate treatment effects given
the normative presence of covariate measurement error. The pres-
ent study provides researchers with new knowledge that the EIV is
the best available procedure for estimating treatment effects accu-
rately when using ANCOVA with nonexperimental designs. Using
the EIV minimizes bias, maximizes statistical power, and keeps
the Type I error rate close to its nominal level. In addition, we
provide a practical tool (i.e., computer program) that allows re-
searchers to implement the EIV in the future, with the goal of
yielding more accurate ANCOVA results that, in turn, are likely to
lead to more accurate assessments regarding the size of treatment
effects and better decisions in terms of interventions, practices, and
policy making.
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Appendix A

Analytic Derivations

The purpose of Appendix A is twofold. First, we show the
derivation of Equation 2, which provides an explanation for the
various factors that bias treatment-effect estimates. Second, we
show equations for computing real Type I error rates associated
with tests for treatment effects in the presence of fallible covari-
ates.

Derivation of Equation 2

The analysis of covariance (ANCOVA) estimates in Equation 1
are depicted in matrix terms as follows:

��1

� � �
1

1 � �x�
2 � 1 ��x�

��x� 1 ���y�

�xy
� , (A1)

where �xy and �y� represent correlations between the dependent
variable and the covariate and treatment, respectively, and �x� is
the correlation between treatment and covariate. Equation A1 can
be expressed as b � Rx�

�1 �y, where b is a vector containing the
estimates in Equation A1, the product of the fraction and matrix
represents the inverse of the correlation matrix between treatment
and covariate, Rx�

�1, and �y is a vector of correlations between the
independent variables and yij. Equation A1 can be further modified
by accounting for measurement error in xij and yij. That is, the
unattenuated, true score correlations for �y�, �xy, and �x� can be

adjusted for measurement error by substituting �ya��yy,
�xy��xx��yy, and �x���xx, respectively. The matrix expression can
be updated to b � �Rx� J Rxx�

	1�y��yy, where J denotes the
Hadamard product (i.e., element-wise multiplication) between Rx�

and a reliability matrix, Rxx�, which contains ��xx in the upper and
lower triangles and ones in the diagonal. Also note that �y includes
�xy��xx in the second row.

First, we demonstrate that null hypothesis tests (i.e., Ho: �j � 0)
are incorrect when �xx � 1 and �1x – �0x 
 0. The formula for
squared part correlations in the following equation is useful for
deriving an expression for �y� in the presence of an error-free
covariate when Ho is true:

	R�
2 �

��y� � �xy�x��
2

1 � �x�
2 . (A2)

Specifically, if H0 is true (i.e., �R�
2 � 0), then Equation A2 simplifies

to �y� � �xy�x� and b� [Rx� J Rxx]
	1 ��x�, ��xx�� �xy��yy, where

��x�, ��xx�� is a 2� 1 vector with the elements separated by a comma.
If both xij and yij are error-free, then the unique contribution of the

treatment beyond the covariate is Rx�
2 � �R�

2 � �xy
2 , where Rx�

2 is the
variance accounted for in yij by the covariate and treatment and �xy

2 is
the proportion of variance in yij accounted for by xij alone. Previous
research showed that Rx�

2 � ��x�, ��xx� �Rx� J Rxx�
	1��x�, ��xx���xy

2 �yy

(Cramer, 1974; Jennings, 1965), which suggests that

(Appendices continue)
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�R�
2 � ��x�, ��xx��Rx� J Rxx�

	1��x�, ��xx���xy
2 �yy

� �xy
2 �xx�yy. (A3)

We represent Equation A3 using matrix algebra as follows:

�R�
2 � �xy

2 �yy� 1

1 � �xx�x�
2 � �x�

��xx
�� 1 	�x���xx

	�x���xx 1 �
� � �x�

��xx
� � �xx�. (A4)

Pre- and postmultiplying the matrix by the vectors yields

�R�
2 � �xy

2 �yy��x�
2 �1 � �xx� � �xx�1 � �x�

2 �

1 � �xx�x�
2 � �xx� , (A5)

which simplifies to

�R�
2 � �xy

2 �yy��xa
2 �1 � �xx� � �xx�1 � �xa

2 � � �xx�1 � �xx�xa
2 �

1 � �xx�xa
2 � .

(A6)

Rearranging terms yields the following desired solution:

�R�
2 � �xy

2 �yy�xa
2 �1 � 2�xx � �xx

2

1 � �xx�xa
2 � �

�xy
2 �yy�xa

2 �1 � �xx�
2

1 � �xx�xa
2 .

(A7)

The definition of point biserial correlations can be substituted
into Equation A1 for �x� and �y� as

�x� �
��1x � �0x��p�1 � p�


x
and

�y� �
��1y � �0y��p�1 � p�


y
, (A8)

where p represents the proportion of subjects in the treatment
group, 
x is the standard deviation of xij across the treatment and
control groups, 
y is the standard deviation of yij across the groups,
and �1y – �0y are unadjusted mean differences between the groups

on yij. The following equation includes the updated expression,
which is identical to Equation 2 in the article:

�R�
2 �

�xy
2 �yy��1x � �0x�

2p�1 � p��1 � �xx�
2


x
2 � �xx��1x � �0x�

2p�1 � p�
. (A9)

Equation A9 shows that �R�
2 will be unbiased when either �xx �

1 or �1x – �0x � 0.

Computing Type I Errors in the Presence of
Fallible Covariates

The standard F statistic for testing treatment effects in an
ANCOVA model is F � (Rx�

2 	 �xy
2 )(n 	 3)/(1 	 Rx�

2 ), where Rx�
2

is the proportion of variance explained by the covariate, xij, and the
treatment effect, �j (Kutner, Nachtsheim, Neter, & Li, 2005;
Maxwell, Delaney, & Manheimer, 1985). Consider the case where
there is no treatment effect in the presence of a fallible covariate.
Given that Rx�

2 � �R�
2 � �xy

2 , the F statistic can be rewritten as
F� � �R�

2(n 	 3)/(1 	 Rx�
2 ), which suggests that the standard F

statistic is biased in the amount of F� when Ho is true. Conse-
quently, the central F distribution is inappropriate and the noncen-
tral F distribution (Mudholkar, Chaubey, & Lin, 1976; Pearson &
Hartley, 1951) can be used to compute Type I error rates by
specifying a noncentrality parameter. The noncentral F distribution
is defined as

f�F, �1, �2, �� �
�n

2��1, ���2

�2��2��1
, (A10)

where �n
2 is the noncentral chi-square distribution with v1 degrees

of freedom and noncentrality parameter � � F�. Type I error rates
are computed from the integral in the following equation:

P�F � F*1	�,1,N	3� � �
F1	�, 1, N	3

�

 

f�F,1,N � 3,
�R�

2�n � 3�

1 � Rx�
2 �dF,

(A11)

where F*1	�,1,N	3 is the standard critical value from the central F
distribution.

(Appendices continue)
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Appendix B

R Program for Errors-in-Variables (EIV) Regression

The following R code defines a function called “eiv”:

eiv�	function(formula,reliability,data){
mfx�	model.matrix(formula,data�data)
p�	length(mfx[1,])	1;n�	length(mfx[,1])

mf �	 match.call(expand.dots � FALSE)
m �	 match(c(“formula”, “data”, “subset”, “weights”, “na.action”,

“offset”), names(mf), 0L)
mf �	 mf[c(1L, m)]
mf$drop.unused.levels �	 TRUE
mf[[1L]] �	 as.name(“model.frame”)
mf �	 eval(mf, parent.frame())

mf�	data.frame(mf)
MXX�	cov(mfx[,c(2:(p�1))]);MXY�	cov(mfx[,c(2:(p�1))],mf[,1])
Suu�	matrix(0,p,p);diag(Suu)�	(1-reliability)*diag(MXX)
Mxx�	MXX-(1	p/n)*Suu;Btilde�	solve(Mxx)%*%MXY
MSEtilde�	as.numeric(n*(1	2*t(Btilde)%*%MXY�t(Btilde)%*%MXX%*%Btilde)/(n	3))
Rhat�	matrix(0,p,p);diag(Rhat)�	(t(Btilde)%*%Suu)^2
VCtilde�	MSEtilde*(1/n)*solve(Mxx)�(1/n)*solve(Mxx)%*%(Suu*MSEtilde�Suu%*
%Btilde%*%t(Btilde)%*%Suu�2*Rhat)%*%solve(Mxx)

ttilde�	Btilde/sqrt(diag(VCtilde))
output�	cbind(reliability,Btilde,sqrt(diag(VCtilde)),ttilde,2*(1-pt(ttilde,n	p)))
colnames(output)�	c(’Reliability’,’Est.’,’S.E.’,’t’,’Prob.(�	t	)’)
output
}

Users can implement the eiv function by first submitting the aforementioned code to R. Once the eiv function is entered into R, users
need to specify a statistical model, a vector of reliability coefficients for the predictors, and the name of the data set. For example, the
following code would compute an EIV analysis with a dependent variable (y), two covariates (x1 and x2), and a dichotomously coded
treatment effect (treat):

eiv(y�x1�x2�treat,reliability�c(.8,.9,1),data�eivdata)

Also, note that the option reliability� allows users to specify the reliability of the three predictors (in this case, the reliability
coefficients for x1, x2, and treat are .8, .9, and 1.0, respectively). Finally, the option denoted by data� specifies the name of the data set
containing the dependent and independent variables (the name of the data set in this example is eivdata). Submitting the eiv command
will produce a table of regression output with disattenuated estimates, parameter standard errors based upon Equation 4 of the article, t
values, and p values. This code is also available at http://math.ucdenver.edu/~sculpeppe/EIV.R or http://mypage.iu.edu/~haguinis/eiv.html
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