
psychometrika—vol. 84, no. 1, 285–309
March 2019
https://doi.org/10.1007/s11336-018-9649-2

HIGH-STAKES TESTING CASE STUDY: A LATENT VARIABLE APPROACH FOR
ASSESSING MEASUREMENT AND PREDICTION INVARIANCE

Steven Andrew Culpepper

UNIVERSITY OF ILLINOIS AT URBANA–CHAMPAIGN

Herman Aguinis

GEORGE WASHINGTON UNIVERSITY

Justin L. Kern

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Roger Millsap

ARIZONA STATE UNIVERSITY

The existence of differences in prediction systems involving test scores across demographic groups
continues to be a thorny and unresolved scientific, professional, and societal concern. Our case study
uses a two-stage least squares (2SLS) estimator to jointly assess measurement invariance and prediction
invariance in high-stakes testing. So, we examined differences across groups based on latent as opposed to
observed scores with data for 176 colleges and universities from The College Board. Results showed that
evidence regarding measurement invariance was rejected for the SAT mathematics (SAT-M) subtest at the
0.01 level for 74.5% and 29.9% of cohorts for Black versusWhite and Hispanic versusWhite comparisons,
respectively. Also, on average, Black students with the same standing on a common factor had observed
SAT-M scores that were nearly a third of a standard deviation lower than for comparable Whites. We also
found evidence that group differences in SAT-Mmeasurement interceptsmay partly explain thewell-known
finding of observed differences in prediction intercepts. Additionally, results provided evidence that nearly
a quarter of the statistically significant observed intercept differences were not statistically significant at
the 0.05 level once predictor measurement error was accounted for using the 2SLS procedure. Our joint
measurement and prediction invariance approach based on latent scores opens the door to a new high-stakes
testing research agenda whose goal is to not simply assess whether observed group-based differences exist
and the size and direction of such differences. Rather, the goal of this research agenda is to assess the
causal chain starting with underlying theoretical mechanisms (e.g., contextual factors, differences in latent
predictor scores) that affect the size and direction of any observed differences.
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1. Introduction

A classic application of psychometrics involves developing standardized tests to predict
future academic and job performance (Cleary, 1968; Humphreys, 1952). A central concern for
prediction as outlined in testing standards and guidelines by the American Educational Research
Association (AERA), American Psychological Association (APA), National Council onMeasure-
ment in Education (NCME), and Society for Industrial and Organizational Psychology (SIOP) is
ensuring that test scores provide a uniform interpretation about the underlying construct and that
subsequent predictions are invariant for all individuals regardless of demographic group member-
ship (AERA, APA, & NCME, 2014; SIOP, 2018). In accordance with recommended practices,
prior research assessed prediction invariance (PI) using observed scores and results support the
conclusion that standardized test scores underpredict college grades of women relative to men
(e.g., Fischer, Schult, & Hell, 2013a; Keiser, Sackett, Kuncel, & Brothen, 2016; Kling, Noftle,
Robins, 2012; Schult, Hell, Päßler, & Schuler, 2013) and overpredict the performance of ethnic
minorities (e.g., Aguinis, Culpepper, & Pierce, 2016; Berry & Zhao, 2015; Culpepper, 2010;
Culpepper & Davenport, 2009; Mattern & Patterson, 2013). PI is of practical concern because
decisions involving test scores must be based on a common prediction equation. In other words,
the use of test scores can be considered an unearned benefit in cases of overprediction or a penalty
in cases of underprediction. Despite decades of research, issues of demographic group differences
remain a thorny and unresolved scientific, professional, and societal concern.

Psychometric research indicates that observeddifferencesmaybepartially explainedbygroup
differences at the latent variable level (Bryant, 2004;Culpepper, 2012a;Hong&Roznowski, 2001;
Millsap, 1997, 1998, 2007, 2011;Wicherts &Millsap, 2009). Accordingly, latent variable models
allow for an understanding of unobserved and underlying processes that may be causing observed
differences. In fact, latent variable models allow us to ask and answer more specific, and possibly
useful, questions related to: (1) the latent structure for subtests; (2) whether measurement invari-
ance (MI) holds so that the relationship between the latent and observed variables is independent
of unintended constructs (e.g., gender or race); and (3) whether prediction invariance exists when
relating latent variables to performance (e.g., grade point average for students and job performance
for workers). The answers to such questions are only available through the use of latent variable
models, which are also critical for identifying the cause of group-based observed differences. In
turn, such improved understanding can lead to the implementation of interventions and actions
aimed at decreasing such differences in the future.

Because of their focus on latent scores, investigations ofMI and PI (MI&PI) have the potential
to provide researchers with an “X-ray vision” to understand observed group differences. In fact,
Millsap’s research provides a clear rationale for jointly assessing MI and PI (i.e., MI&PI studies).
For instance, Millsap (1995, 1997, 1998) showed that in the presence of latent group mean
differences, the absence of MI necessarily implies the existence of PI and vice versa (i.e., in some
cases there is a duality between MI and PI). Additionally, observed intercept differences that
lead to over- or underprediction can be caused by violation of MI where individuals with certain
characteristics have systematically lower or higher performance in observed scores irrespective of
their actual standing on the latent variable. In short, MI&PI studies are useful for understanding
reasons for observed differences in prediction systems across demographic groups.

2. The Present Case Study

Continued focus on observed scores is useful for understanding the existence of group-based
differences in high-stakes testing, but less so for understanding underlying processes and, there-
fore, unlikely to help resolve the “supreme problem” (Ployhart, Schmitt, & Tippins, 2017) of the
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existence of such differences. In the present case study we report what may be the first, large-scale
MI&PI examination using high-stakes selection data and show the extent to which inferences and
substantive conclusions differ when jointly assessing MI and PI based on latent scores compared
to using observed scores with ordinary least squares in a moderated multiple regression (MMR)
model. We do so by introducing a novel two-stage least squares (2SLS) estimator for MI&PI
studies and using a dataset from The College Board collected from Black, Hispanic, and White
students who enrolled in 176 colleges between 2006 and 2008. Predictors included the three SAT
subtests (i.e., mathematics, writing, and critical thinking) and high school grade point average
(HSGPA). The criterion was first-year grade point average in college (FGPA). As a brief preview,
results show that nearly a quarter of the statistically significant MMR intercept differences were
not statistically significant once predictor measurement error was accounted for using the 2SLS
procedure. We found that 2SLS and MMR agreed on the absence of group slope differences in
over 80% of cohorts.1 Also, we found evidence of group differences in measurement intercepts
for the SAT mathematics subtest (i.e., SAT-M), indicating underperformance for Black and His-
panic students, but not the SAT writing subtest (i.e., SAT-W). Furthermore, we found evidence
that group differences in the predictor measurement model may be a driver of observed intercept
differences. Specifically, in cases where SAT-Mmeasurement intercept differences were detected
therewere relativelymore instances of observed group intercept differences. Our study alsomakes
a contribution to the literature on structural equation modeling (SEM) estimators by extending
the 2SLS framework to jointly assess measurement invariance and prediction invariance. Our
joint measurement and prediction invariance approach based on latent scores opens the door to
a new high-stakes testing research agenda whose goal is to not simply assess whether observed
group-based differences exist and the size and direction of such differences. Rather, the goal of
this research agenda is to assess the causal chain starting with underlying theoretical mechanisms
(e.g., contextual factors, differences in latent predictor scores) that affect the size and direction of
any observed differences.

The remainder of our article is structured as follows. First, we discuss the latent variable
approach for MI&PI studies and define measurement and prediction invariance. Second, we
introduce the 2SLS estimator for MI&PI studies with an illustration. This second section also
discusses strategies for choosing instrumental variables inMI&PI studies. That is,we show that the
dummy variable and product variables involving the dummy variable can be used as instruments in
cases where the usual SEM orthogonality conditions between the common and unique factors are
satisfied in each group. Also, we provide empirical evidence that the 2SLS estimator outperforms
the traditional maximum likelihood (ML) estimator in smaller sample size situations and has
comparable statistical power as ML in cases typically observed in high-stakes testing situations
(i.e., larger sample sizes and higher reliability coefficients). Third, we conduct MI&PI analyses
using The College Board data and compare inferences and substantive conclusions regarding
group-based differences of the MI&PI results with the classic MMR procedure that uses observed
rather than latent scores.We provide evidence that employingMMR yields substantively different
conclusions regarding the presence of PI in more than one-quarter of cohort comparisons for both
Black–White andHispanic–White group differences.We also report results that observed intercept
differences may be partially explained by whether MI is satisfied. We also show that finding
observed intercept differences is closely related to instances of group differences in measurement
intercepts. Finally, we discuss implications of the MI&PI analysis for theory, test development,
and future research.

1 Throughout our article, we use the term cohort to refer to “institution-cohort” because in some cases there is more
than one cohort of students per institution (i.e., up to three cohorts for some institutions given that data were collected in
2006, 2007, and 2008).
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3. A Measurement Invariance and Prediction Invariance Model

In this section, we describe a latent variable approach for assessing MI and PI in high-stakes
testing contexts. Let X be a q-vector of observed predictor measures for a given test taker (as
mentioned earlier, in our case studyX consists of data used for college admissions decisions such as
HSGPA and SAT subtests). There is college admissions and preemployment evidence suggesting
the presence of a single latent variable to account for observed variation in X (Coyle, Purcell,
Snyder, & Kockhunov, 2013; Gottfredson, 1988; Gottfredson & Crouse, 1986; Millsap, 1998;
Olea & Ree, 1994; Ree & Earles, 1991; Ree, Earles, & Teachout, 1994; Viswesvaran, Ones, &
Schmidt, 1996).2 Accordingly, MI hypotheses are generally tested by comparing measurement
thresholds and loadings of common factor models across groups. These hypotheses can be tested
using multigroup structural equation models (SEMs; Sörbom, 1978) or a “Multiple Indicator,
Multiple Cause” (MIMIC) model, which we follow in our article. For instance, in the case with
twogroups let g equal 1 for a focal group (e.g.,Blacks) and zero for a referencegroup (e.g.,Whites).
Then, a MIMIC measurement model for group differences in latent intercepts and loadings is

X = τ + �ξ + �1g + �2ξg + δ (1)

where τ is a q-vector of latent measurement intercepts, � is a q × m matrix of factor loadings
that capture the relationship between the m-vector of common factors ξ and X, and δ is a vec-
tor of unique factors. The q-vector �1 and the q × m matrix �2 quantify group differences in
measurement intercepts and loadings, respectively.

There are several definitions of MI. The most restrictive form of MI is referred to as strict
invariance, which implies that groups have identicalmeasurement intercepts, loadings, and unique
factor variances. Strict invariance is a sufficient condition for ensuring that the latent factors have
the same relation with X for both the reference and focal group (Borsboom, Romeijn, &Wicherts,
2008; Millsap, 1997, 1998). Strong invariance only requires equality of group measurement
intercepts and loadings (Meredith, 1993). A third and less restrictive formofMI isweak invariance
(also called pattern invariance), which requires that factor loadings be identical across groups, but
not the measurement intercepts or unique factor variances.

In our application we assess MI by testing for group differences in measurement intercepts
(i.e., assessing plausibility of strong versus weak invariance). Group differences in measurement
intercepts provide evidence of systematic measurement bias, because one group will earn a higher
observed score due to measurement differences as opposed to values for the latent factor. Equa-
tion 1 implies that the latent intercepts and loadings for the reference group (i.e., g = 0) are τ and
�, respectively, whereas the latent intercepts and loadings are τ +�1 and�+�2, respectively, for
the focal group (i.e., g = 1). We therefore can assess MI hypotheses by testing whether �1 = 0,
�2 = 0, or both. Although we focus on testing equality of measurement intercepts, we note that
our 2SLS estimator can be used to assess the equality of group loadings. However, our method
cannot be used to assess the equality of group unique factor variances. Group differences in unique
factor variances are a form of heteroscedasticity and prior research considered instrumental vari-
able estimators for such cases (e.g., see Hausman, Newey, Woutersen, Chao, & Swanson, 2012),
but these estimators require the raw data, which we do not have in our case study.

A structural model is needed to assess PI. For example, a model relating the common factor
ξ to a single criterion performance indicator such as grade point average or job performance (i.e.,
η = Y ) is

Y = β0 + β ′
1ξ + β2g + β ′

3ξg + ε (2)

2 But, please see the Potential Limitations and Additional Future Directions section for additional commentary
regarding this issue.
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where β0 is an intercept, the m-vector β1 relates ξ to Y for the reference group, β2 quantifies
latent prediction intercept differences, them-vector β3 measures group differences in latent slope
coefficients, and ε is an error. Unlike observed score methods (e.g., MMR; Aguinis, 2004), the
model in Eq. 2 assesses PI at the latent variable level to avoid confounding group differences in
measurement parameters with observed PI.

4. Two-Stage Least Squares Estimator of MI&PI

In this section, we discuss a 2SLS estimator for MI&PI studies that we apply to The College
Board data. There are at least two estimators of the MI&PI model parameters: (1) maximum like-
lihood (ML) with multigroup SEMs (e.g., see Muthen, Kaplan, & Hollis, 1989; Muthen, 1989;
Wicherts, Dolan, & Hessen, 2005); and (2) 2SLS instrumental variables (IVs) framework as
demonstrated below. Both methods can be applied using raw data that consists of complete
observations of the predictors and criterion for all test takers. The standard ML estimator for
multigroup SEMs requires, at a minimum, group variance–covariance matrices. However, group
variance–covariance matrices are unavailable in The College Board data and it is not possible
to follow Wichert et al.’s recommendation to employ multigroup SEMs. To address this chal-
lenge, we extend the 2SLS framework (e.g., see Bollen, 1996; Bollen, Kolenikov, Bauldry, 2014;
Hägglund, 1982; Hayashi, 2000; Nestler, 2014) to models with categorical moderators involving
latent predictors and show how it can be used to jointly test MI and PI hypotheses. Note there are
several additional advantages of 2SLS estimators relative to ML in addition to the reason outlined
above. For example, it is computationally simple and may perform better in smaller sample sizes
than ML (e.g., Oczkowski, 2002, p. 107).

Next, we introduce the 2SLS estimator with an illustration, discuss strategies for selecting
instruments, and outline parameter estimation. “Appendix A” includes details about inference
and approaches for understanding model misspecification. In addition, “Appendix B” describes
a Monte Carlo simulation study offering evidence about the accuracy of the 2SLS estimator.

4.1. Introduction of the 2SLS Estimator and Illustration

We introduce the 2SLS estimator for the model in Eq. 1 with m = 1 and q = 4 and consider
an illustration with a single criterion variable as in Eq. 2. We set the location and scale of ξ by
fixing the first measurement intercept and loading equal to zero and one (i.e., τ1 = 0 and λ1 = 1),
respectively. MI studies assume at least one indicator variable is invariant across groups, which
is equivalent to fixing at least one element of �1 and �2 to zero. For purposes of illustration, we
fix the elements of �1 and �2 corresponding to X1 to zero.

The traditional ML estimator is based on the assumption that the observed variables, X,
have a multivariate normal distribution. In contrast, IV methods estimate parameters using 2SLS
or generalized least squares. In particular, IV methods proceed by rewriting the common factor
model in terms of observed variables by substituting ξ = X1 − δ1 in the equations for X2, X3,
and X4, which implies the model in Eq. 1 can be written as

⎡
⎣
X2
X3
X4

⎤
⎦ =

⎡
⎣

τ2
τ3
τ4

⎤
⎦ +

⎡
⎣

λ2
λ3
λ4

⎤
⎦ X1 +

⎡
⎣

γ12
γ13
γ14

⎤
⎦ g +

⎡
⎣

γ22
γ23
γ24

⎤
⎦ X1g +

⎡
⎣

δ2 − λ2δ1 − γ22δ1g
δ3 − λ3δ1 − γ23δ1g
δ4 − λ4δ1 − γ24δ1g

⎤
⎦ . (3)

We can rewrite the equation for X2, X3, and X4 above as

X j = Z jb j + u j , j = 2, 3, 4 (4)
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where Z j is a designmatrix that includes a column of 1s, X1, g, and X1g; b j = (τ j , λ j , γ1 j , γ2 j )
′;

and u j is a residual term defined as u j = δ j − λ jδ1 − γ2 jδ1g.
Similarly, the structural model in Eq. 2 can be rewritten by substituting ξ = X1 − δ1:

Y = β0 + β1X1 + β2g + β3X1g + ε − β1δ1 − β3δ1g, (5)

which can be more succinctly rewritten as

Y = Zyβ + uy (6)

where Zy is a design matrix with columns corresponding to a column of ones, X1, g, and X1g
and uy = ε − β1δ1 − β3δ1g.

In principle, it is possible to estimate the unknown model parameters (i.e., b2, b3, and b4, and
β) by separately regressing X2, X3, and X4 onto Z j and Y onto Zy . However, the parameters in
Eqs. 4 and 6, in general, cannot be estimated with procedures like ordinary least squares because,
for instance, Z j is not orthogonal to u j (e.g., X1 is correlated with δ1 which appears in the residual
for each equation corresponding to X2, X3, and X4). One solution to this problem is to employ
IVs (e.g., see Bollen, 1996; Bollen et al., 2014; Hayashi, 2000). That is, we regress Z j and Zy onto
a collection of instrumental variables that are orthogonal to the errors u j using 2SLS to obtain
unbiased estimates of b j . Accordingly, let V j denote a design matrix of IVs for the j th indicator
in the measurement model for j = 2, . . . , q, and let V y denote the instruments for the structural
model.

4.2. Specifying Instrumental Variables

A critical decision is the choice of IVs for X2, X3, X4, and Y . Bollen (1996) and Bollen et al.
(2014) noted that the primary criterion for deciding on IVs for a given variable is to include any
variable that relates to the variables in Z j , but is orthogonal to the residual term u j . The following
discussion outlines the available IVs based upon the MI&PI model and assumptions.

First, the choice of IVs can be based upon standard SEM orthogonality conditions. For
instance, factor models generally assume the common factors and unique factors have expected
values of zero (i.e., E(ξ) = E(δ) = 0), the common and unique factors are orthogonal (i.e.,
E(δξ ′) = 0), and the unique factors are orthogonal (i.e., E(δδ′)) is a diagonal matrix). Accord-
ingly, one way to specify V j is to include the other observed indicators that are omitted from the
model for X j . For instance, the equation for X2 could use a V2 with a column of ones in addition
to columns equal to X3 and X4, because both X3 and X4 are expected to relate to X1 and both X3
and X4 are assumed independent of u2. Similarly, V3 could include a column of ones, X2, and
X4, and V4 would include a column of ones, X2, and X3.

Second, g and product (i.e., interaction) terms involving g can be used as instruments if the
usual SEM assumptions are satisfied where these variables are orthogonal to u j (i.e., E(gu j ) = 0
and E(X j gδ j ′) = 0 for j �= j ′, respectively). In fact, E(gu j ) = 0 and g can be used as an IV for
X j whenever E(δ j ) = 0 for both the reference and focal groups. Furthermore, E(X j gδ j ′) = 0
and the product variable X j g can be included as an instrument for X j ′ whenever ξ and δ j ′ are
orthogonal for the focal group (i.e., the group for which g = 1).

Therefore, under the aforementioned orthogonality conditions the IVs for the model in
Eq. 3 are V2 = (1, X3, X4, g, X3g, X4g), V3 = (1, X2, X4, g, X2g, X4g), and V4 =
(1, X2, X3, g, X2g, X3g). The corresponding predictor matrices are Z2 = Z3 = Z4 = Z =
(1, X1, g, X1g). Following the logic discussed for the predictor common factor model, it is pos-
sible to use the 2SLS estimator of β by selecting instruments that are orthogonal to the prediction
error uy . The IVs for Y are denoted by V y = (1, X2, X3, X4, g, X2g, X3g, X4g) if the observed
predictor variables, grouping factor, and product terms are orthogonal to uy .
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4.3. Parameter Estimation and Inference

We next discuss parameter estimation via the 2SLS estimator. The 2SLS estimator for the X j

model in Eq. 4 can be written as a function of variance–covariance matrices involving Z and V j ,

b̂ j = (S′
vz jS

−1
vv jSvz j )

−1(S′
vz jS

−1
vv jSvx j ) (7)

where Svz j is a matrix of covariances between Z and V j , Svv j is the variance–covariance matrix
of the IVs V j , and Svx j is a vector of covariances between the IVs V j and outcome variable X j .
The most popular competitor for assessing MI&PI hypothesis is a multigroup SEM. However,
a multigroup SEM cannot be performed with the College Board data because it requires group
specific variance–covariance matrices and the data do not include information about group vari-
ances for college grades (i.e., outcome or criterion variable). Unlike the multigroup SEM, Eq. 7
shows that the 2SLS estimator only requires information about variances and covariances among
the predictors and instruments and covariances with the outcome variables, and not the variances
of the outcome variables. Consequently, 2SLS is the only estimator available for our case study
given that the raw data are unavailable.

5. Application of the 2SLS MI&PI Estimator to High-Stakes Testing

In this section, we report MI&PI results using The College Board data. In our case study we
assess the extent to which:

1. The instruments implied by a single factor model are valid.
2. There is evidence ofmeasurement bias in the form of group differences inmeasurement

intercepts of the SAT subtests for Black versusWhite (BW) and Hispanic versusWhite
(HW) comparisons.

3. Measurement intercept differences relate to observed MMR intercept differences.
4. MI&PI study results provide different substantive conclusions than the traditional

MMR approach in terms of the prediction systems across groups.

We next describe The College Board data and outline our implementation of the MI&PI model
and then report results.

5.1. Participants and Measures

We used data from The College Board, which include 247 and 264 variance–covariance
matrices for comparing Blacks andWhites (BW) andHispanics andWhites (HW), respectively, in
176 institutions for cohorts enrolled between 2006 and 2008. These data were released byMattern
and Patterson (2013) in a 412-page supplemental appendix. To align the present discussion with
the description of the 2SLS estimator above, we denote the predictor variables as X1 = SAT-CR
(critical thinking), X2 = SAT-M (mathematics), X3 = SAT-W (writing), X4 = HSGPA (high
school grade point average), Y = FGPA (first-year grade point average in college), and let g
denote the grouping variable (i.e., the dummy variable for the BW and HW comparisons).

The data include two types of variance–covariance matrices. An example of the first type
is reported in Table 1, which includes the variable means, variances, and covariances for 1099
students within institution #89 and the 2006 cohort for the Black–White comparison. Table 1
shows the data include variables such as HSGPA, SAT-CR, SAT-M, and SAT-W, in addition to
a categorical variable (e.g., a dummy variable that equaled 1 for Blacks and 0 for Whites), the
product of the continuous and categorical variables (i.e., product terms carrying information on
the demographic group by test interaction effect), and FGPA.
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Table 1.
Variable means, variances, and covariances for 1099 students within institution #89 and the 2006 cohort for the Black–
White comparison.

Variable Mean 1 2 3 4 5 6 7 8 9 10

1 HSGPA 0.00 0.41 22.98 28.01 24.75 −0.03 0.03 1.90 3.30 2.15 0.30
2 SAT-CR 0.00 22.98 7404.63 4596.11 5169.24 −2.78 1.90 505.04 493.96 414.64 26.37
3 SAT-M 0.00 28.01 4596.11 7681.02 4314.48 −4.34 3.30 493.96 761.32 525.54 29.20
4 SAT-W 0.00 24.75 5169.24 4314.48 6614.45 −2.76 2.15 414.64 525.54 480.22 27.99
5 Black 0.05 −0.03 −2.78 −4.34 −2.76 0.05 −0.03 −2.64 −4.13 −2.63 −0.04
6 Black * HSGPA −0.03 0.03 1.90 3.30 2.15 −0.03 0.03 1.81 3.17 2.06 0.03
7 Black * SAT-CR −2.77 1.90 505.04 493.96 414.64 −2.64 1.81 497.34 481.93 406.99 3.16
8 Black * SAT-M −4.34 3.30 493.96 761.32 525.54 −4.13 3.17 481.93 742.51 513.59 4.85
9 Black * SAT-W −2.75 2.15 414.64 525.54 480.22 −2.63 2.06 406.99 513.59 472.63 3.33
10 FGPA 2.71 0.30 26.37 29.20 27.99 −0.04 0.03 3.16 4.85 3.33 0.75

HSGPA high school grade point average application, SAT-CR SAT critical reading subtest, SAT-M SAT
mathematics subtest, SAT-W SAT writing subtest, FGPA first-year college grade point average.
Black equals 1 for Blacks and 0 forWhites; Black* SAT-CR, Black* SAT-M, andBlack* SAT-Ware product
terms for interactions.

The second type includes data for all applicants who submitted SAT scores to each cohort,
which provides estimates of population matrices that are not affected by restriction of range
to the same degree as the data on enrolled students. Adopting the same approach as Aguinis,
Culpepper, and Pierce (2016) and Mattern and Patterson (2013), we used population variances
and covariances among the predictor variables and the Lawley correction to estimate unrestricted
criterion variance and covariances between the criterion and predictors (e.g., Birnbaum, Paulson,
& Andrews, 1950). Mattern and Patterson (2013) did not report the number of applicants for each
cohort, so our analyses used sample sizes of enrolled students as a lower bound for the number
of students making up the population data.

The HSGPA and SAT variables are on different scales, so we normalized the variance–
covariance matrices using the overall population variances as recommended by Jöreskog (1971)
and Sörbom (1974, 1978). Normalizing the cohort variance–covariance matrices implies that the
measurement parameters can be interpreted on a standard deviation metric as opposed to the
original SAT metrics. Additionally, we did not standardize FGPA so the resulting estimates for
ξ and HSGPA in the structural model are interpreted in relation to how predictors covary with
differences on the college GPA scale.

5.2. Implementation of Measurement Invariance and Prediction Invariance Assessment

Figure 1 presents a path diagram for themodel that we estimated for each of the 511 variance–
covariancematrices.We compared the 2SLS estimates to the traditionalMMRprocedure that uses
ordinary least squares (OLS) to evaluate the extent to which application of the MI&PI framework
yields different substantive conclusions regarding group prediction differences. In particular, the
MMR model regressed Y onto X1, X2, X3, X4, g, X1g, X2g, X3g, and X4g to assess group
differences in observed intercepts and slopes.

The measurement model As noted earlier, prior literature supports a single factor for selection
decisions with cognitively loaded tests and we accordingly specified a single common factor to
underlie the SAT-CR (i.e., X1), SAT-M (i.e., X2), and SAT-W (i.e., X3) subtests (as shown in
Fig. 1). That is, the common factor ξ jointly influences performance on the standardized subtests
and the unique factors (i.e., δ1, δ2, and δ3) capture aspects of test performance that are specific to
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1 λ2 λ3

β2

β1g

0 τ2g τ3g

β0g

X1 X2 X3

Y

X4

ξ

1 1 1

1

Figure 1.
Estimated model for group g used for the Monte Carlo simulation study and application for assessing measurement
invariance and prediction invariance with latent scores. Note The model assumes equality of loadings and unique factor
variances. Residual variances are omitted from the diagram. For the application X1 = SAT-CR = SAT critical reading
subtest; X2 = SAT-M (i.e., SAT mathematics subtest); X3 = SAT-W (i.e., SAT writing subtest); X4 = HSGPA (i.e., high
school grade point average); and Y = FGPA (i.e., first-year college grade point average).

the three subtests and are assumed unrelated to ξ . The unique factors represent all other variables
that affect performance after the effects of the common factor are removed.

Assessing measurement invariance Because tests of observed prediction intercepts are sus-
ceptible to differences in measurement intercepts (e.g., Millsap, 1997; 1998; 2007), our estimated
model in Fig. 1 allows latent intercepts for SAT-M (i.e., τ2g) and SAT-W (i.e., τ3g) to differ across
groups. In contrast, observed group slope differences are affected by group differences in loadings
and common factor variances and, given less evidence for systematic slope differences (Aguinis et
al., 2016; Mattern & Patterson, 2013), the estimated models equated the loadings for SAT-M (i.e.,
λ2) and SAT-W (i.e., λ3) between groups. An additional requirement for estimating multigroup
SEMs is that at least one measurement intercept is constrained to be equal between groups to be
able to identify the model parameters (Jöreskog, 1971; Sörbom, 1974, 1978) and we therefore
equated group measurement intercepts for SAT-CR scores (i.e., τ1g = 0 for g = 0, 1).

Assessing prediction invariance in a latent structural model The estimated model in Fig. 1
allows HSGPA to covary with ξ and groups to differ in prediction intercepts (i.e., β0g), and slope
coefficients for ξ (i.e., β1g). The slope coefficient for HSGPA (i.e., β2) is constant across groups.
The group differences in prediction intercepts between the focal (e.g., Blacks or Hispanics) and
reference groups are denoted by β01 − β00 for 2SLS (i.e., latent scores) and b01 − b00 for MMR
(i.e., observed scores). β11 − β10 indicates latent slope differences.

Selecting instrumental variables We used 2SLS to estimate the parameters in Fig. 1. As
mentioned earlier, IVs must be orthogonal to the corresponding error term. Based upon the path
model in Fig. 1, HSGPA is orthogonal to the SAT subtest errors and therefore can be used as
an instrument for the measurement models for X2 and X3. The IVs for the measurement models
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Table 2.
Number and percentages of cohorts with statistically significant J-statistics for test of validity of instruments by group
comparison, equation, and rejection level, α.

α = 0.001 α = 0.01 α = 0.05

Sig. n.s. % n.s. Sig. n.s. % n.s. Sig. n.s. % n.s.

Black–White
Aggregate 3 244 98.8 21 226 91.5 37 210 85.0
SAT-M 4 243 98.4 17 230 93.1 42 205 83.0
SAT-W 0 247 100.0 0 247 100.0 9 238 96.4
FGPA 1 246 99.6 8 239 96.8 23 224 90.7

Hispanic–White
Aggregate 16 248 93.9 25 239 90.5 37 227 86.0
SAT-M 16 248 93.9 28 236 89.4 42 222 84.1
SAT-W 0 264 100.0 4 260 98.5 8 256 97.0
FGPA 1 263 99.6 11 253 95.8 24 240 90.9

Sig.= statistically significant, n.s.= statistically nonsignificant, % n.s.= percent statistically nonsignificant.
SAT-CR= SAT critical reading subtest; SAT-M= SATmathematics subtest; SAT-W= SATwriting subtest;
FGPA = first-year college grade point average. Note there were 2 degrees of freedom for the SAT-M and
SAT-W tests and 1 for the FGPA test.

are V2 = (1, X3, g, X3g, X4g) for SAT-M and V3 = (1, X2, g, X2g, X4g) for SAT-W and the
predictor matrix for estimating the loadings and group differences in latent intercepts is Z =
(1, X1, g).3 HSGPA is included as a control variable in the structural prediction model (Bernerth
& Aguinis, 2016), so V y = (1, X2, X3, g, X2g, X3g) and the criterion predictor variable design
matrix is Zy = (1, X1, X4, g, X1g).

5.3. Results

Assessing validity of instruments We used Sargan’s J test to evaluate the adequacy of the
model specification and IVs. Table 2 summarizes the number and percentages of statistically
significant J-statistics for tests of validity of instruments by group comparison, equation, and
rejection levels of α = 0.05, 0.01, and 0.001. Note there were two degrees of freedom for
the SAT-M and SAT-W tests and one degree of freedom for the FGPA test (i.e., df = number of
instruments minus the number of variables included in the second stage measurement or structural
equation of interest). The “aggregate” row in Table 2 corresponds to J-statistics that combine
information over the three equations (i.e., the two measurement equations for SAT-M and SAT-W
and the one structural equation for college grades). The rows in Table 2 with variable names
indicate J-statistics specific to each equation to provide local information regarding model fit.
Results in Table 2 for the aggregate J-statistics suggest that, when using a 0.001 rejection level,
the instruments were valid for 98.8% (i.e., 244/247) of the BW comparisons and 93.9% (i.e.,
248/264) of the HW comparisons. The J-statistics reported for individual equations indicate that
SAT-M was the primary cause of misspecification in the few instances the J-statistics rejected the
hypothesis of valid instruments.

3 The interaction of HSGPA and the grouping variable (i.e., X4g) was included as an instrument in the measurement
models, but notHSGPA (i.e., X4), alone. Preliminary analyses provided evidence of significant J-statistics formany cohorts
when including X4 as an instrument in the measurement models. One explanation as to why X4g is a valid instrument,
but not X4, relates to the orthogonality of these variables with error terms. That is, the J-statistics provided evidence that
E(X4gδ j ) = E(X4δ j |g = 1) = 0 (for j = 1, 2, 3), which suggests the orthogonality condition is satisfied for Blacks and
Hispanics. The J tests that included X4 suggested that E(X4δ j ) �= 0, which, given evidence that E(X4δ j |g = 1) = 0,
suggests the orthogonality condition may not be satisfied for Whites.
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Table 3.
Number (percentage) of cohorts with statistically significant SAT-M and SAT-W measurement intercept differences by
group comparisons and rejection levels (i.e., α).

SAT-M SAT-W

α = 0.001 α = 0.01 α = 0.05 α = 0.001 α = 0.01 α = 0.05

Black–White
Sig. 153 (61.9) 184 (74.5) 218 (88.3) 0 (0) 0 (0) 2 (0.8)
n.s. 94 (38.1) 63 (25.5) 29 (11.7) 247 (100) 247 (100) 245 (99.2)

Hispanic–White
Sig. 48 (18.2) 79 (29.9) 134 (50.8) 0 (0) 0 (0) 3 (1.1)
n.s. 216 (81.8) 185 (70.1) 130 (49.2) 264 (100) 264 (100) 261 (98.9)

Sig. = statistically significant, n.s. = statistically nonsignificant. There were 247 and 264 cohorts for the
Black–White and Hispanic–White comparisons, respectively.

Table 4.
Means and standard deviations of intercept differences by Black–White and Hispanic–White comparisons.

Intercept differences Black–White Hispanic–White

Mean SD Mean SD

SAT-M, τ21 − τ20 −0.35 0.10 −0.19 0.08
SAT-W, τ31 − τ30 −0.02 0.07 −0.02 0.06
FGPA (MMR), b01 − b00 −0.19 0.16 −0.10 0.13
FGPA (2SLS), β01 − β00 −0.17 0.18 −0.09 0.15

SD= standard deviation across comparisons, 2SLS= two-stage least squares instrumental variables estima-
tor based on latent scores, MMR=moderated multiple regression based on observed scores. There were 247
and 264 cohorts for the Black–White and Hispanic–White comparisons, respectively. SAT-M = SATmathe-
matics subtest; SAT-W = SAT writing subtest; FGPA= first-year college grade point average. τ21 − τ20 and
τ31 − τ30 are SAT-M and SAT-W measurement intercept differences, respectively. b01 − b00 and β01 − β00
denote MMR and 2SLS prediction intercept differences.

Assessing measurement invariance Table 3 reports the number (and percentage) of cohorts
with statistically significant SAT-M and SAT-W measurement intercept differences by group
comparisons and rejection levels (i.e., α = 0.05, 0.01, and 0.001). Results summarized in Table 3
indicate evidence of statistically significant group differences in latent measurement intercepts
for SAT-M, but not SAT-W. More specifically, there were no cohorts with BW or HW SAT-W
measurement intercept differences at the 0.01 level. In contrast, there was evidence that tests of
SAT-M MI were rejected at the 0.01 level for 74.5% (i.e., 184/247) and 29.9% (i.e., 79/264) of
BW and HW comparisons, respectively.

Table 4 includes the means and standard deviations of latent measurement intercepts (i.e.,
τ21 − τ20 for SAT-M and τ31 − τ30 for SAT-W) by group comparison. These results show not only
statistical but also practical significance (Aguinis, Werner, Abbott, Angert, & Kohlhausen, 2010).
In particular, the average SAT-M group latent measurement intercept difference equaled −0.35,
which indicates that, in the typical cohort, Black students with the same value of ξ had observed
SAT-M scores that were nearly a third of a standard deviation lower compared to Whites. The
differences were smaller, on average, for the HW comparison. That is, Hispanics with the same
value of ξ had SAT-M scores that were a fifth of a standard deviation smaller than Whites.

Relationship between measurement and observed intercept differences Prior research sug-
gests that group differences in measurement intercepts could cause observed group prediction
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Table 5.
Cross-tabulations of the number of statistically significant observed moderated multiple regression (MMR) intercept
differences versus SAT-M measurement intercept differences by group comparison and rejection level, α.

SAT-M difference MMR with ordinary least squares

α = 0.001 α = 0.01 α = 0.05

Sig. n.s. Total Sig. n.s. Total Sig. n.s. Total

Black–White
Sig. 72 81 153 105 79 184 143 75 218
n.s. 22 72 94 16 47 63 10 19 29
Total 94 153 247 121 126 247 153 94 247

Hispanic–White
Sig. 27 21 48 47 32 79 78 56 134
n.s. 24 192 216 32 153 185 31 99 130
Total 51 213 264 79 185 264 109 155 264

Sig. = statistically significant, n.s. = statistically nonsignificant. SAT-M difference = latent measurement
intercept difference for test of measurement invariance. There were 247 and 264 cohorts for the Black–White
and Hispanic–White comparisons, respectively.

intercept differences based on MMR (e.g., Culpepper, 2012a; Millsap, 1997, 1998, 2007). We
next report on the relationship between MI and MMR tests of observed intercept differences.
Table 5 reports cross-tabulations of the number of statistically significant observed MMR inter-
cept differences versus SAT-Mmeasurement intercept differences by group comparison and rejec-
tion level to disaggregate results in Table 3 for SAT-M and understand the possible relationship
between measurement intercept differences and observed prediction intercept differences using
the MMR procedure. Table 5 provides evidence of observed MMR prediction intercept differ-
ences in 61.9% (i.e., 153/247) and 41.3% (i.e., 109/264) of cohorts for BW and HW comparisons,
respectively, at the 0.05 rejection level. There was some evidence that measurement intercept
differences translated into observed intercept differences. For instance, 65.6% (i.e., 143/218) of
the cohorts with significant SAT-M BW measurement intercept differences at the 0.05 level had
significant observed group intercept differences. Similarly, 58.2% (i.e., 78/134) of cohorts with
HW measurement intercept differences also had statistical evidence of observed intercept dif-
ferences. In contrast, detecting statistically significant observed intercept differences was less
common in cohorts where measurement invariance for SAT-M was satisfied. That is, we found
observed intercept differences for the BW and HW comparisons at the 0.05 rejection level in
34.5% (i.e., 10/29) and 23.8% (i.e., 31/130) of cohorts where there was no statistical evidence to
reject SAT-Mmeasurement invariance. In short, results in Table 5 provide some empirical support
for theoretical work that tests of MMR intercept differences are possibly conflated with group
measurement intercept differences.

Assessing prediction invariance in a latent structural model Table 6 reports cross-tabulations
of the number of cohorts with statistically significant criterion intercept differences for MMR
versus 2SLS by group comparison and rejection levels of 0.05, 0.01, and 0.001. The results suggest
fewer instances of prediction intercept differences when using latent scores. For a 0.05 rejection
level, there was evidence of latent prediction intercept differences in 46.2% (i.e., 114/247) and
32.2% (i.e., 85/264) of cohorts for BW and HW comparisons, respectively. Also, the empirical
conditional probabilities of finding observed intercept differences given latent prediction intercept
differences at the 0.05 rejection level equal 98.2% (i.e., 112/114) and 96.5% (i.e., 82/85) for the
BW and HW comparisons, respectively.

Table 6 provides evidence that MMR and 2SLS tended to agree more for the HW than BW
comparison on cases where there was no evidence of intercept differences. For instance, using
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Table 6.
Cross-tabulations of the number of statistically significant criterion intercept differences for moderatedmultiple regression
(MMR) versus two-stage least squares (2SLS) by group comparison and rejection level, α.

2SLS β01 − β00 MMR with ordinary least squares

α = 0.001 α = 0.01 α = 0.05

Sig. n.s. Total Sig. n.s. Total Sig. n.s. Total

Black–White
Sig. 37 1 38 78 2 80 112 2 114
n.s. 57 152 209 43 124 167 41 92 133
Total 94 153 247 121 126 247 153 94 247

Hispanic–White
Sig. 30 0 30 49 2 51 82 3 85
n.s. 21 213 234 30 183 213 27 152 179
Total 51 213 264 79 185 264 109 155 264

β01 − β00 = latent group intercept differences. Sig. = statistically significant, n.s. = statistically nonsignif-
icant. SAT-M Intercept = latent measurement intercept difference for test of measurement invariance. There
were 247 and 264 cohorts for the BW and HW comparisons, respectively.

a 0.05 rejection level, 2SLS and MMR agreed on the absence of group intercept differences in
56.6% (i.e., 152/264) of cohorts for the HW comparison, which was larger than the agreement
rate of 37.2% (i.e., 92/247) for the BW comparison. We also found that 2SLS identified fewer
instances of prediction intercept differences for cases where MMR results suggest the existence
of different prediction systems across groups. For example, for the BW comparison with a 0.05
rejection level the 2SLS results did not support prediction intercept differences in 26.8% (i.e.,
41/153) of cohorts indicated by MMR. Similarly, for the HW comparison with a 0.05 rejection
level the 2SLS failed to reject the PI hypothesis in 24.8% (i.e., 27/109) of cohorts detected by
MMR.

Returning to Table 4, it also reports the average intercept differences for MMR and the
2SLS structural model. The average BW and HW group intercept differences for MMR (i.e.,
b01 − b00 = −0.19 for BW and −0.10 for HW) and 2SLS (i.e., β01 − β00 = −0.17 for BW
and −0.09 for HW) were similar with MMR being slightly larger. The results provide evidence
that, on average, Blacks earned a GPA that was 0.17 units lower than Whites with a similar ξ

level. Table 4 shows that the standard deviations for β01 − β00 were relatively large for the BW
(i.e., SD = 0.18) and HW (i.e., SD = 0.15) comparisons, which provides evidence of cohort
variability in latent group prediction intercepts.

Finally, Table 7 reports cross-tabulations of the number of statistically significant slope differ-
ences forMMRversus 2SLS by group comparison and rejection level. In general, both approaches
identified fewer group slope differences than intercept differences. For instance, 2SLS identified
latent group slope differences at the 0.001 rejection level for the BW and HW comparisons in
10.1% (i.e., 25/247) and 4.9% (i.e., 13/264) of the cohorts. TheMMRprocedure detected observed
slope differences between BW and HW in 9.3% (i.e., 23/247) and 4.9% (i.e., 13/264) of cohorts at
the 0.001 rejection level. The 2SLS and MMR procedures tended to agree on which cohorts had
statistically insignificant slope differences. That is, both 2SLS and MMR failed to detect slope
differences at the 0.001 rejection level in 83.4% (i.e., 206/247) cohorts for the BW comparison
and 91.3% (i.e., 241/264) of cohorts for the HW comparison. In short, the results provide evidence
that the relationship between ξ and Y was generally constant between groups for both the BW
and HW comparisons.
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Table 7.
Cross-tabulations of the number of statistically significant slope differences for moderated multiple regression (MMR)
versus two-stage least squares (2SLS) by group comparison and rejection level, α.

2SLS β11 − β10 MMR with ordinary least squares

α = 0.001 α = 0.01 α = 0.05

Sig. n.s. Total Sig. n.s. Total Sig. n.s. Total

Black–White
Sig. 7 18 25 13 24 37 29 32 61
n.s. 16 206 222 33 177 210 55 131 186
Total 23 224 247 46 201 247 84 163 247

Hispanic–White
Sig. 3 10 13 11 22 33 26 40 66
n.s. 10 241 251 29 202 231 65 133 198
Total 13 251 264 40 224 264 91 173 264

β11 − β10 = latent group intercept differences. Sig. = statistically significant, n.s. = statistically nonsignif-
icant. There were 247 and 264 cohorts for the BW and HW comparisons, respectively.

6. Discussion

Our case study tackled the challenge of jointly assessing measurement invariance and pre-
diction invariance using latent scores, developed a 2SLS estimator for high-stakes testing data,
and applied the method to 511 variance–covariance matrices to assess MI&PI for Black versus
White and Hispanic versusWhite comparisons.We answeredMillsap’s (2007) call and conducted
a high-stakes selection case study of MI&PI using data made available by The College Board.
Existing research has typically investigated whether prediction systems are similar across demo-
graphic groups using observed scores in the context of MMR (e.g., Aguinis et al., 2010; 2016;
Mattern & Patterson, 2013). The MMR approach based on observed scores is justifiable given
professional standards and guidelines, and the fact that practitioners use observed scores in mak-
ing choices among applicants in educational admissions and preemployment decisions. But, it is
not necessarily informative regarding underlying reasons for any differences found. In contrast,
our MI&PI analysis provides evidence that measurement properties may partially contribute to
uncovering observed intercept differences. Next, we discuss the implications of our results for
theory and practice and offer future research directions.

6.1. Implications for Theory

First, our application to high-stakes testing data demonstrates the type of new information and
insights provided by MI&PI studies. In particular, our application found evidence that inferences
and substantive conclusions differ when jointly assessing MI and PI compared to the traditional
MMR approach relying on observed scores. For instance, the general consensus in the literature is
that when PI is found, the intercept for Whites is statistically larger than the intercepts for Blacks
and Hispanics. Our application of the usual MMR approach largely supports this notion where,
for instance, BW intercept differences were detected in 153 of 247 cohorts and HW intercept
differences were found in 109 of 264 cohorts. In contrast, the MI&PI results based upon 2SLS
provided evidence that nearly a quarter of the statistically significant MMR intercept differences
were not statistically significant once we account for predictor measurement error. Based on our
results, using observed scores leads to the conclusion that there are group differences. But, these
differences exist at the observed, fallible, score level and not necessarily at the latent score level.
As such, theoretical and empirical research aimed at reducing these apparent differences may not



STEVEN ANDREW CULPEPPER ET AL. 299

be as fruitful as researchers may hope because these differences do not seem to generally exist at
the latent score level.

Second, consider the following additional implications of adopting an “X-ray approach”
based on latent scores to the simultaneous assessment of measurement and prediction invariance.
We assessed MI and found evidence of group differences in measurement intercepts for SAT-M
but not SAT-W. High-stakes standardized tests such as the SAT are routinely reviewed for biased
items, and it is unclear from our findings that SAT-Mmeasurement intercept differences are due to
deficits of the test.Our findings provide evidence of underperformance on theSAT-MforBlack and
Hispanic students. This finding could be a methodological artifact. That is, the finding that SAT-M
measurement intercepts differ when modeled as an indicator of a general factor may be due to a
differential achievement gap on SAT-M relative to the SAT-CR reference variable. If so, additional
research is needed to understand reasons for the differential achievement gap between SAT-M
and SAT-CR. Alternatively, the educational and psychological literature offers explanations for
underperformance. For example, the underperformance associated with measurement intercept
differences may be due to stereotype threat as found in laboratory experiments (Steele, 2011;
Walton, Murphy, & Ryan, 2015; Nguyen & Ryan, 2008; Wicherts et al., 2005). The debate
regarding the effect of stereotype threat in non-laboratory testing situations continues (e.g., see
Aronson & Dee, 2012, and Sackett & Ryan, 2012), and additional research is needed to isolate its
effect in high-stakes testing and to assess whether measurement intercept differences could also
be attributed to other factors (e.g., socioeconomic status, Zwick & Himelfarb, 2011; differences
in opportunities to learn academic content, Albano & Rodriguez, 1998).

Third, results from the empirical application offer specific conclusions for researchers inter-
ested in the use of cognitively loaded tests, which is a critical issue for industrial and organizational
psychology, human resource management, educational psychology, and other fields concerned
with predicting future performance in educational and preemployment settings (e.g., Schmitt,
Keeney, Oswald, Pleskac, Quinn, Sinha, & Zorzie, 2009). The widely adopted and standard
definition of PI, which has been endorsed by major professional organizations concerned with
high-stakes testing (i.e., AERA, APA, & NCME, 2014; SIOP, 2018) refers explicitly to a dif-
ference in the prediction of observed scores across groups. Our results show that the current
operationalization of PI using MMR is not necessarily informative regarding possible underlying
reasons for group differences. Our analysis suggests that some observed intercept differences may
be partially driven by measurement intercept differences for SAT-M and exemplifies the type of
deeper understanding that is possible about observed differences when followingMillsap’s (2007)
recommendation of jointly assessing MI&PI.

Fourth, we contribute to literature on SEM estimators by extending the 2SLS framework to
jointly testMI andPI hypotheses. There is a significant body ofwork on the use of IV estimators for
latent variable models (Bollen, 1996; Bollen et al., 2014; Bollen &Maydeu-Olivares, 2007; Häg-
glund, 1982). However, there is limited research focused specifically on assessing MI hypotheses
with IV estimators (e.g., Nestler, 2014). Our article leads to an improved understanding of which
observed variables can be used as instruments. That is, we showed that the dummy variable and
product variables involving the dummy variable can be used as instruments in situations when
the usual SEM orthogonality conditions between the common and unique factors are satisfied
in each group. Furthermore, our Monte Carlo simulation results (see “Appendix B”) support the
use of 2SLS for MI&PI studies. Statistical power of 2SLS to detect differences in measurement
intercepts or latent prediction equations was comparable to ML in cases typically observed for
MI&PI selection studies (i.e., larger sample sizes and higher reliability coefficients), and 2SLS
proved more stable and accurate than ML for smaller sample sizes.

Fifth, we focused on MI&PI studies but our 2SLS estimator is more broadly applicable for
tests of hypotheses about interactions between continuous latent variables and observed factors.
For example, 2SLS could be used in intervention studies that assess group differences when
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controlling for standing on a latent variable at pretest or in any settings where interest lies in
categorical moderators with continuous predictors that are measured with error.

Finally, overall, our study opens the door to a new research agenda whose goal is to not
simply assess whether different prediction systems exist across groups and the size and direction
of such differences. Rather, the goal of this research agenda is to assess the causal chain starting
with underlying theoretical mechanisms (e.g., contextual factors, differences in latent predictor
scores) on the various components shown in Fig. 1, which in turn affect the size and direction
of observed differences in intercepts and slopes. For instance, our results demonstrate that the
prior conclusion of ethnicity-based overprediction (e.g., Berry & Zhao, 2015; Mattern & Patter-
son, 2013) could be partially attributed to the use of the fallibleMMRmethod (Aguinis, Culpepper,
& Pierce, 2010; Culpepper, 2012b). Future research can follow our approach to unpack reasons
for the underprediction of academic performance for women (e.g., Fischer, Schult, &Hell, 2013b;
Keiser, Sackett, Kuncel, & Brothen, 2016; Kling, Noftle, Robins, 2012; Schult, Hell, Päßler, &
Schuler, 2013). Additionally, future research could build upon Wicherts et al. (2005) by testing
for stereotype threat with the measurement model while also jointly evaluating PI in the latent
structural model. In short, our article may serve as a catalyst for future PI research focusing on
a deeper understanding of the nature of differences across groups to support theory and future
high-stakes test development and improvement.

6.2. Implications for Practice

The fact that our application showed that conclusions about group differences depend upon
whether inferences are based upon latent variable or observed variable models is useful informa-
tion for testing and human resource management professionals. Observed scores are, in part, a
“mirage” because they are not an accurate representation of what is going on under the surface.
Practitioners often face the challenge of “fixing” tests with differences between demographic
groups (e.g., Aguinis, Cortina, & Goldberg, 1998), but there is no hope of fixing them if the true
reasons causing those differences remain unknown. Our approach allows us to investigate those
possible reasons—and then plan actions and interventions accordingly.We argue that practitioners
could jointly assess MI&PI to understand reasons for observed differences in prediction equa-
tions. Borsboom (2006) andMillsap (2007) noted that one barrier to more widespread application
of the approach we used in our article is that applied researchers cannot implement best-practice
recommendations regarding MI and PI that are not broadly disseminated in the testing standards
and guidelines (AERA, APA, & NCME, 2014; SIOP, 2018). Perhaps the results from our study
can support future revisions to these documents to also jointly assess measurement and prediction
invariance. In fact, the 5th edition of SIOP’s (2018) Principles for the Validation and Use of Per-
sonnel Selection Procedures includes several research-based recommendations for practitioners.
For example, one recommendation is that “testing professionals should consider both statistical
power to detect themoderator effect and the precision of the reported effects” (p. 20). Also, regard-
ing how practitioners should assess the possible presence of predictive bias (i.e., differences in
intercepts or slopes across demographic groups), the Principles note that “Small total or group
sample sizes, unequal group sample sizes, range restriction, and predictor unreliability are factors
that can contribute to low power” (p. 24). In short, we hope that future editions of this and other
guidelines will discuss the benefits of conducting joint MI&PI analyses based on latent scores as
described in our article.

We acknowledge that our recommendation that practitioners also implement a latent score
approach may not be shared by all. Clearly, selection decisions are based upon observed scores
and some researchers consider prediction invariance as an applied problem that is concerned with
whether predictions with observed scores differ across groups, so any questions about invariance
are best answered with observed scores. The debate between focusing on observed versus latent
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models is not new. For example, more than half a century ago there was an argument that true
scores are entirely unobservable and therefore any questions regarding them are meaningless
(Loevinger, 1957). Lord and Novick (1968) summarized Loevinger’s argument as follows: “The
observed score is the only meaningful notion, and any question that cannot be answered solely
by reference to observed scores is necessarily a meaningless question” (p. 27). Lord and Novick
(1968) refuted this argument by maintaining that true scores are important theoretically and can
yield verifiable implications in practice. They noted that, “. . . the notion of a true score properly
defined is a conceptually useful one, which leads to many important practical results” (p. 27).
That is, using a latent variable approach may shed light on actual practice. In our case, the latent
variable approach provides insights about results from analyses with observed variables because
it uncovered possible underlying mechanisms leading to observed differences.

6.3. Potential Limitations and Additional Research Directions

There are several directions for future research to improve upon our study. First, selection
research typically defines the criterion performance as observed indicators of a single latent
variable, η, as found with The College Board data. In principle, a multivariate common factor
theory of performance can also be assumed for the observed Y (Aguinis, 2019). For instance, there
is evidence that the SAT subtests differentially predict verbal and math ability (e.g., see Coyle,
Purcell, Snyder, & Kockhunov, 2013, or Coyle, Purcell, Snyder, Richmond, 2014) and future
research should assess MI&PI by defining performance in specific content areas or individual
courses (e.g., see Young, 1991a, 1991b).

Second, we used 2SLS to estimate the MI&PI model parameters given the availability of
information in The College Board data. But, there are other more efficient IV estimators (Bollen
et al., 2014). Ideally, future research will collect data on group variance–covariance matrices
so multigroup SEMs can be employed. The data from multiple universities are multilevel, and
future research could also consider the application of multilevel structural equation modeling
(Rabe-Hesketh, Skrondal, Pickles, 2004) to understand institutional variability in MI and PI.
Furthermore, we assumed a linear relationship between predictors and performance, which may
not be appropriate for some institutions. Future research should extend our analyses to nonlinear
models that account for range restriction and measurement error (Culpepper, 2016).

Third, in our 2SLS application we were not concerned with estimating submodels that
imposed additional constraints on the parameters (e.g., equal loadings or other parameters as
discussed by Nestler, 2014). Researchers may want to use 2SLS to test MI&PI hypotheses with
additional parameter constraints, and future research should consider extending Nestler’s 2SLS
estimator to handle such situations.

Fourth, one criticism of 2SLS estimators concerns the chosen reference variable
(Jöreskog, 1998; Oczkowski, 2002). We followed the recommendation of Bollen (1996) and
Bollen et al. (2014) and designated SAT-CR as the reference variable because the J-statistics indi-
cated the remaining predictors were valid instruments for a greater share of cohort comparisons.
Future applications can address this limitation by analyzing group variance–covariance matrices
with multigroup SEMs.

Fifth, we used a unidimensional factor model for the SAT subtests where the unique factors
captured features that are specific to math or verbal achievement. There is support for a common
factor model given that SAT composite scores load strongly on a general intelligence factor “g”
(Coyle & Pillow, 2008) and SAT-M and SAT-V load onto a common factor with similar ACT
tests (Coyle, Purcell, Snyder, & Kockhunov, 2013). Furthermore, we used SAT-M and SAT-W as
instruments in the structural model and there were only a few cohorts with a significant J test.
Future research is needed to determine the adequacy of a unidimensional factor model for the
SAT subtests.
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7. Concluding Remarks

Our case study used a novel 2SLS estimator to jointly assess measurement invariance and
prediction invariance based on latent scores. This approach led to new information and insights
regarding underlying issues, such as the plausibility of measurement invariance, that likely con-
tribute to observed score differences in predictions systems across demographic groups.Webelieve
that the time has come for the adoption of this approach, as advocated in a Presidential Address to
the Psychometric Society byRoger E.Millsap (2007)more than a decade ago. Doing so is likely to
lead to a deeper understanding of not just the presence and size of observed differences, but also to
what are the factors that produce such differences. Because the existence of these differences has
been a thorny and unresolved scientific, professional, and societal concern for decades, we believe
new alternatives and approaches that provide information that can be used to implement solutions
should be a welcome addition to psychometrics and human resource management researchers and
practitioners alike.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

8. Appendix A Parameter Inference and Assessing Validity of Instruments

8.1. Parameter Inference

Under the assumption of constant error variance, asymptotic theory (e.g., see Hayashi, 2000)
implies that,

√
n(b̂ j − b j ) ∼ N

(
0, σ̂ 2

j (S
′
vz jS

−1
vv jSvz j )

−1
)

(A1)

where the estimator for the conditional error variance is,

σ̂ 2
j = n − 1

n

(
s2j − 2S′

xz j b̂ j + b̂
′
jSzz b̂ j

)
(A2)

and s2j is the sample variance of X j , n is the sample size, Sxz j is a vector of covariances between
X j and Z, and Szz is the variance–covariance matrix of Z.

8.2. Assessing Validity of Instruments

The question of whether a latent structure is adequate is generally translated into a statistical
question as to whether the model fits the data. There is a vast body of work on the development
and evaluation of model fit indices for structural equation models (e.g., Browne & Cudeck, 2002;
Fan & Sivo, 2005; Hu & Bentler, 1999; Lance, Beck, Fan, & Carter, 2016; MacCallum, Browne,
Sugawara, 1996; McDonald & Ho, 2002; Nye & Drasgow, 2011; Vandenberg & Lance, 2000;
Widaman & Thompson, 2003; Wu, West, & Taylor, 2009). Much of prior research developed fit
indices for ML estimators although there are also formal tests for model fit for the IVs estimator.
Assessingmodel fit for the IVs estimator is basedupon assessing the quality of the instruments used
to estimatemodel parameters.We employ Sargan’s J test for overidentification (Hayashi, 2000) to
evaluate the adequacy of the 2SLS model fit. As Bollen et al. (2014) noted, the J test is used for a
hypothesis test where, “The null hypothesis is that all IVs for each equation are uncorrelated with
the disturbance of the same equation and this is true for each equation in the system. Rejection
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of the null hypothesis means that at least one IV in at least one equation is invalid” (p. 31). In the
particular case ofMI&PI studies, the J test statistics can be used to infer whether themeasurement
or structural models are misspecified. Note that the J tests do not detect misspecifications in the
latent variable variance and covariance structure (e.g., missing covariance parameters between
residual terms), which is different than typical SEM fit indices.

For the 2SLS estimator, Sargan’s omnibus J test of overidentification is,

J = n
∑
j

(Svx j − Svz j b̂ j )
′S−1

vv j (Svx j − Svz j b̂ j )

σ̂ 2
j

, (A3)

which is evaluated using an asymptotic Chi-square distribution with degrees of freedom equal to
the number of instruments less the number of unrestricted coefficients.

9. Appendix B Monte Carlo Simulation Study Assessing the Accuracy of the 2SLS Estimator

9.1. Overview

We conducted a Monte Carlo simulation study to assess the accuracy of the 2SLS estimator
for MI&PI studies, because prior research (e.g., Marsh, Wen, & Hau, 2004; Moulder & Algina,
2002) recommends against using 2SLS to estimate latent interaction effects involving continuous
variables (Bollen & Paxton, 1998). Thus, our Monte Carlo study is necessary to evaluate the per-
formance of the 2SLS estimator for latent interaction effects between categorical and continuous
variables. We also compared the performance of 2SLS estimator to the traditional multigroupML
procedure (e.g., see Jöreskog, 1971; Sörbom, 1974, 1978).

We based the Monte Carlo study upon the model in Fig. 1 where there are three observed
variables (X1, X2, and X3) as measures of a common factor ξ . Additionally, we assess parameter
recovery for the structural relationship between ξ and a single criterion variable, Y . Note that we
fixed the correlation between X4 and ξ and the slope relating X4 to Y to zero to focus on the
accuracy of estimating group differences in measurement intercepts, prediction intercepts, and
prediction slopes.

We chose parameter values for the Monte Carlo simulation based on values used in prior PI
research (e.g., Aguinis et al., 2010; Culpepper & Aguinis, 2011; Culpepper & Davenport, 2009;
Moulder & Algina, 2002) and estimates from the application reported in the main body of our
article. We manipulated the following seven parameters: sample size (i.e., n = 250, 500, and
1000), proportion of the sample in the focal group (i.e., p = 0.1, 0.3, and 0.5), observed variable
reliabilities (i.e., rxx = 0.5, 0.7, and 0.9), group latent mean differences (i.e., κ1−κ0 = 0,−0.25,
and −0.5), measurement intercept differences for X2 (i.e., τ21 − τ20 = 0,−0.25, and −0.5),
latent prediction intercept differences (i.e., β01 − β00 = 0,−0.25, and −0.5), and latent slope
differences (i.e., β11 − β10 = 0,−0.125, and −0.25). The remaining parameters were fixed
across the simulation conditions; i.e., the loadings were defined as λ1 = λ2 = λ3 = 1, the latent
intercept and slope for group g = 0 were β00 = 0 and β10 = √

0.5, measurement intercepts for
both groups were set to zero (i.e., τ10 = τ11 = τ20 = τ30 = τ31 = 0), and the criterion residual
variance was ψ = 0.5. Note that the unique factor variances for X1, X2, and X3 (i.e., θ1, θ2, and
θ3) were determined by values for rxx .

9.2. Results

We performed the simulation study with a total of 2187 combinations of parameters values.
The outcomes of interest for the ML and 2SLS estimators were bias, Type I error rates, and
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Table 8.
Type I error and power rates ML and 2SLS estimators for measurement intercept differences, τ21 − τ20, by n, p, rxx .

n p rxx τ21 − τ20 = 0 τ21 − τ20 = −0.25 τ21 − τ20 = −0.50

ML 2SLS ML 2SLS ML 2SLS

250 0.1 0.5 a 0.050 a 0.143 a 0.387
500 0.1 0.5 a 0.051 a 0.221 a 0.640
1000 0.1 0.5 0.051 0.051 0.471 0.381 0.961 0.897
250 0.3 0.5 0.052 0.050 0.296 0.252 0.785 0.681
500 0.3 0.5 0.050 0.051 0.506 0.416 0.967 0.914
1000 0.3 0.5 0.051 0.051 0.789 0.675 0.999 0.995
250 0.5 0.5 0.052 0.052 0.332 0.281 0.838 0.741
500 0.5 0.5 0.050 0.051 0.569 0.470 0.982 0.945
1000 0.5 0.5 0.051 0.051 0.843 0.740 1.000 0.998
250 0.1 0.7 a 0.052 a 0.252 a 0.709
500 0.1 0.7 0.052 0.052 0.535 0.433 0.981 0.939
1000 0.1 0.7 0.051 0.051 0.822 0.707 1.000 0.998
250 0.3 0.7 0.053 0.052 0.577 0.475 0.985 0.951
500 0.3 0.7 0.052 0.051 0.855 0.750 1.000 0.999
1000 0.3 0.7 0.050 0.050 0.987 0.955 1.000 1.000
250 0.5 0.7 0.053 0.053 0.640 0.534 0.993 0.971
500 0.5 0.7 0.050 0.051 0.900 0.808 1.000 1.000
1000 0.5 0.7 0.050 0.051 0.994 0.974 1.000 1.000
250 0.1 0.9 0.053 0.054 0.811 0.696 1.000 0.998
500 0.1 0.9 0.053 0.053 0.980 0.936 1.000 1.000
1000 0.1 0.9 0.050 0.051 1.000 0.998 1.000 1.000
250 0.3 0.9 0.053 0.052 0.986 0.952 1.000 1.000
500 0.3 0.9 0.052 0.051 1.000 0.999 1.000 1.000
1000 0.3 0.9 0.052 0.052 1.000 1.000 1.000 1.000
250 0.5 0.9 0.053 0.054 0.994 0.974 1.000 1.000
500 0.5 0.9 0.052 0.051 1.000 1.000 1.000 1.000
1000 0.5 0.9 0.050 0.051 1.000 1.000 1.000 1.000

There were 2187 parameter combinations that were each replicated 5000 times. ML =
maximum likelihood estimator, 2SLS = two-stage least squares instrumental variables estimator.
aConditionswhereMLdid not converge due to at least one small group sample size for at least one replication.
τ21 − τ20 denotes group differences in measurement intercepts, n is sample size, p is the proportion of
members in the focal group, and rxx denotes predictor reliability.

power rates for τ21 − τ20 (i.e., measurement intercept differences), β01 −β00 (i.e., latent intercept
differences), and β11 − β10 (i.e., latent slope differences). We estimated the outcomes from 5000
replications and employed an a priori Type I error rate of 0.05 for all tests.

Overall, the 2SLS estimator provided accurate estimates for all combinations of parameter
values. More specifically, the mean bias for the 2SLS estimator across conditions and parameter
values was −0.001, 0.000, and −0.001 for τ21 − τ20, β01 − β00, and β11 − β10, respectively,
and bias for the parameter values was less than 0.01 in absolute value for 99% of conditions. In
contrast, the ML estimator failed to converge for some of the conditions with small n and p. The
ML estimator demonstrated similar bias as the 2SLS estimator after removing 119 of the 2187
conditions for which the ML estimator did not converge. Table 8 reports Type I error rates and
power for theML and 2SLS tests of group measurement intercept differences, τ21−τ20, by values
of n, p, and rxx . Note that “a” in Table 8 denotes conditions where ML failed to converged for all
replications. Table 8 provides evidence that the ML and 2SLS estimators effectively controlled
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Table 9.
Type I error and power rates of ML and 2SLS estimators for latent prediction intercept difference, β01 − β00, by n, p,
rxx .

n p rxx β01 − β00 = 0 β01 − β00 = −0.25 β01 − β00 = −0.50

ML 2SLS ML 2SLS ML 2SLS

250 0.1 0.5 a 0.033 a 0.178 a 0.531
500 0.1 0.5 a 0.035 a 0.309 a 0.780
1000 0.1 0.5 0.049 0.035 0.675 0.530 0.983 0.940
250 0.3 0.5 0.052 0.042 0.479 0.377 0.931 0.855
500 0.3 0.5 0.052 0.043 0.749 0.624 0.995 0.974
1000 0.3 0.5 0.051 0.042 0.942 0.866 1.000 0.999
250 0.5 0.5 0.052 0.048 0.555 0.460 0.970 0.922
500 0.5 0.5 0.051 0.049 0.830 0.724 0.999 0.994
1000 0.5 0.5 0.052 0.049 0.978 0.936 1.000 1.000
250 0.1 0.7 a 0.043 a 0.235 a 0.662
500 0.1 0.7 0.051 0.042 0.477 0.408 0.933 0.891
1000 0.1 0.7 0.050 0.043 0.750 0.670 0.995 0.986
250 0.3 0.7 0.052 0.048 0.556 0.490 0.970 0.944
500 0.3 0.7 0.051 0.046 0.826 0.761 0.999 0.997
1000 0.3 0.7 0.051 0.046 0.975 0.951 1.000 1.000
250 0.5 0.7 0.053 0.051 0.645 0.585 0.992 0.980
500 0.5 0.7 0.050 0.049 0.898 0.852 1.000 1.000
1000 0.5 0.7 0.051 0.049 0.993 0.983 1.000 1.000
250 0.1 0.9 0.053 0.051 0.303 0.289 0.785 0.765
500 0.1 0.9 0.052 0.050 0.524 0.501 0.960 0.951
1000 0.1 0.9 0.051 0.049 0.799 0.777 0.998 0.997
250 0.3 0.9 0.053 0.051 0.609 0.587 0.985 0.981
500 0.3 0.9 0.052 0.051 0.871 0.855 1.000 1.000
1000 0.3 0.9 0.050 0.048 0.987 0.983 1.000 1.000
250 0.5 0.9 0.052 0.052 0.705 0.686 0.997 0.996
500 0.5 0.9 0.051 0.050 0.934 0.924 1.000 1.000
1000 0.5 0.9 0.050 0.050 0.997 0.996 1.000 1.000

There were 2187 parameter combinations that were each replicated 5000 times. ML =
maximum likelihood estimator, 2SLS = two-stage least squares instrumental variables estimator.
aConditions where ML did not converge for at least one replication. β01 − β00 denotes group differences in
prediction intercepts, n is sample size, p is the proportion of members in the focal group, and rxx denotes
predictor reliability.

Type I error rates. Furthermore, the power to detect group measurement intercept differences was
affected by n, p, and rxx . In general, power was larger for ML than 2SLS, but the difference
between the methods declined as τ21 − τ20, n, p, and rxx increased.

Tables 9 and 10 report Type I error rates and power for the ML and 2SLS tests of group
differences in latent prediction intercepts (i.e., β01 − β00) and latent slopes (i.e., β11 − β10).
Similar to the results in Table 8, the ML and 2SLS estimators controlled the Type I error rate
at the a priori level and ML tended to be more powerful than 2SLS across parameter values.
Additionally, the power to detect latent prediction intercept differences tended to be larger than
the power to detect latent slope differences.

In short, results summarized in Tables 8, 9, and 10 support the use of the 2SLS estimator
to perform MI&PI studies. Reassuringly, statistical power for the 2SLS estimator was satisfac-
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Table 10.
Type I error and power rates of ML and 2SLS estimators for latent score slope differences, β11 − β10, by n, p, rxx .

n p rxx β11 − β10 = 0 β11 − β10 = −0.125 β11 − β10 = −0.25

ML 2SLS ML 2SLS ML 2SLS

250 0.1 0.5 a 0.044 a 0.087 a 0.188
500 0.1 0.5 a 0.047 a 0.120 a 0.311
1000 0.1 0.5 0.048 0.049 0.277 0.177 0.748 0.522
250 0.3 0.5 0.050 0.045 0.183 0.120 0.532 0.350
500 0.3 0.5 0.050 0.046 0.307 0.195 0.815 0.600
1000 0.3 0.5 0.049 0.049 0.526 0.334 0.979 0.876
250 0.5 0.5 0.051 0.045 0.196 0.127 0.597 0.409
500 0.5 0.5 0.050 0.048 0.341 0.219 0.881 0.695
1000 0.5 0.5 0.050 0.048 0.591 0.387 0.994 0.938
250 0.1 0.7 a 0.051 a 0.107 a 0.266
500 0.1 0.7 0.049 0.050 0.193 0.157 0.557 0.451
1000 0.1 0.7 0.050 0.051 0.325 0.258 0.840 0.730
250 0.3 0.7 0.053 0.050 0.215 0.173 0.627 0.521
500 0.3 0.7 0.051 0.050 0.368 0.291 0.893 0.807
1000 0.3 0.7 0.052 0.050 0.628 0.510 0.995 0.978
250 0.5 0.7 0.053 0.052 0.240 0.192 0.701 0.600
500 0.5 0.7 0.052 0.050 0.421 0.337 0.941 0.880
1000 0.5 0.7 0.051 0.051 0.699 0.584 0.999 0.993
250 0.1 0.9 0.051 0.052 0.131 0.125 0.364 0.343
500 0.1 0.9 0.051 0.051 0.212 0.200 0.622 0.586
1000 0.1 0.9 0.051 0.051 0.368 0.343 0.893 0.868
250 0.3 0.9 0.053 0.053 0.241 0.226 0.695 0.664
500 0.3 0.9 0.052 0.052 0.416 0.390 0.935 0.918
1000 0.3 0.9 0.050 0.051 0.695 0.661 0.999 0.998
250 0.5 0.9 0.053 0.053 0.273 0.257 0.768 0.741
500 0.5 0.9 0.051 0.051 0.479 0.451 0.967 0.958
1000 0.5 0.9 0.051 0.051 0.772 0.739 1.000 0.999

Note. There were 2187 parameter combinations that were each replicated 5000 times. ML =
maximum likelihood estimator, 2SLS = two-stage least squares instrumental variables estimator.
aConditions where ML did not converge for at least one replication. β11 − β10 denotes group differences
in slope coefficients, n is sample size, p is the proportion of members in the focal group, and rxx denotes
predictor reliability.

tory for parameter conditions typically found in high-stakes testing contexts (e.g., n > 500
and rxx > 0.7).
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