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Monte Carlo simulations were conducted to examine the degree to which the statistical

power of moderated multiple regression (MMR) to detect the effects of a dichotomous

moderator variable was affected by the main and interactive effects of (a) predictor

variable range restriction, (b) total sample size, (c) sample sires for 2 moderator variable-

based subgroups, (d) predictor variable intercorrelation, and (e) magnitude of the moder-

ating effect. Results showed that the main and interactive influences of these variables

may have profound effects on power. Thus, future attempts to detect moderating effects

with MMR should consider the power implications of both the main and interactive

effects of the variables assessed in the present study. Otherwise, even moderating effects

of substantial magnitude may go undetected.

Numerous theories in applied psychology posit the op-

eration of moderator variables, that is, variables that inter-

act with others in explaining variance in a dependent vari-

able. Moreover, in recent years, interest in moderator vari-

ables has increased substantially in applied psychology

(e.g., MacCallum & Mar, 1995; Nesler, Aguinis, Quig-

ley, & Tedeschi, 1993; Sagie & Koslowsky, 1993; Schmitt,

Hattrup, & Landis, 1993) as well as in several related

disciplines, including administrative science, education,

organizational behavior, sociology, and political science

(e.g., Aguinis, Bommer, & Pierce, 1996; Aguinis,

Pierce, & Stone-Romero, 1994; Cordes & Dougherty,

1993; Pierce, Gardner, Dunham, & Cummings, 1993;
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Walsh & Kosnik, 1993; Xie & Johns, 1995). In industrial

and organizational psychology, moderating effects of vari-

ables such as ethnicity and gender on the relationship

between preemployment test scores and measures of per-

formance suggest that the test does not predict perfor-

mance equally well for the subgroups under consideration

(e.g., minorities and nonminorities). Consequently, if a

moderator such as ethnicity is found, there is differential

prediction, and the preemployment test is considered to be

biased for certain subgroups (Bartlett, Bobko, Mosier, &

Hannan, 1978; Cleary, 1968; Linn, 1994; Society for In-

dustrial and Organizational Psychology; SIOP, 1987).

In a seminal article, Zedeck (1971) noted that Z is a

moderator of the relationship between variables X and Y

when the nature (e.g., magnitude) of this relationship

varies across levels of Z. He also described a number

of statistical procedures that can be used for estimating

moderating effects, including moderated multiple regres-

sion (cf. Saunders, 1956). In contrast with the time in

which Zedeck's article was published, moderated multiple

regression (MMR) is now routinely used to estimate and

interpret the effects of both dichotomous and continuous

moderators (e.g., Bartlett et al., 1978; Cronbach & Snow,

1977; Smith & Sechrest, 1991; Stone, 1988; Stone &

Hollenbeck, 1989). Note that MMR is preferred over

other strategies, such as the comparison of subgroup-

based correlation coefficients for two or more subgroups

(Stone-Romero & Anderson, 1994). One reason for this

preference is that results of an MMR analysis provide

researchers with important information that is not pro-

vided by tests of the equality of correlation coefficients.

More specifically, MMR provides information about slope

differences for various subgroups. This information is
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critical in assessing differential prediction (SIOP, 1987).
For instance, a recent review by Sackett and Wilk (1994)
concluded that MMR is the most pervasively used statisti-
cal technique for assessing differential prediction in orga-
nizational and educational settings.

A common strategy for testing hypotheses regarding
moderator variables with MMR relies upon the statistical
test of the unstandardized regression coefficient carrying
information about the moderating (i.e., interaction) effect
(Aiken & West, 1991; Cohen & Cohen, 1983; Darlington,
1990; Jaccard, Turrisi, & Wan, 1990). Given a criterion
or dependent variable Y, a predictor variable X, and a
second predictor variable Z hypothesized to moderate the
X—Y relationship, a product term is formed between the
predictor and the moderator (i.e., X-Z). Then, a regres-
sion model is formed including predictor variables X,
Z, and the X • Z product term, which carries information
regarding their interaction. The statistical significance of
the unstandardized regression coefficient of the product
term (i.e., bx.z) indicates the presence of the interaction.

Note that a moderator variable Z can be continuous
(e.g., age) or dichotomous (e.g., gender). In the case of
a dichotomous moderator variable, dummy codes (e.g., 0
= men and 1 = women) may be used in the regression
analysis.

Statistical Power Problems in Previous Studies

of Moderating Effects

Cronbach (1987) observed that there is a "frequent
failure of [hypothesized] interactions [i.e., moderating
effects] to be [statistically] significant" (p. 417). Consis-
tent with this argument, an examination of recent attempts
to detect the effects of moderator variables using MMR
reveals that they are often unsuccessful. Among the recent
studies that may have failed to detect moderating effects
because of insufficient power are those by Cortina, Doh-
erty, Schmitt, Kaufman, and Smith (1992), Hattrup and
Schmitt (1990), Schmitt et al. (1993), and Wohlgemuth
andBetz (1991).

In view of the statistical power problems with MMR
that militate against the detection of moderating effects,
hypothesized moderator variables have been characterized
as elusive (e.g., Zedeck, 1971). Not surprisingly, there-
fore, in recent years there have been several calls for
additional research on the power of various statistical
techniques, including MMR, to detect moderating effects
(e.g., Cronbach, 1987; Smith & Sechrest, 1991). Stated
differently, there is the need to determine the conditions
under which the use of MMR may. lead researchers to
conclude, erroneously, that there are no moderating effects
(i.e., commit a Type II statistical error). This is not a
trivial issue because the failure of empirical research to
reveal moderating effects may lead researchers to con-

clude, erroneously, that theories that entail interaction ef-
fects are invalid. In addition, on a more applied note, the
failure to detect a moderating effect may lead practitioners
to use personnel selection tests that are biased toward
specific (e.g., protected) subgroups (e.g., women; Dun-
bar & Novick, 1988).

Previous Research on the Power

to Detect Moderating Effects

In response to concerns regarding the detection of mod-
erating effects, several Monte Carlo studies have recently
been conducted to assess the impact of various common
methodological artifacts (e.g., small sample size) on the
power of MMR to detect moderating effects (referred to
hereinafter as MMR power). The results of this research
show that MMR power problems stem from such study-
related artifacts as (a) total sample size (e.g., Alexander &
DeShon, 1994; Stone-Romero & Anderson, 1994), (b)
unequal sample sizes across moderator variable-based
subgroups (Stone-Romero, Alliger, & Aguinis, 1994), (c)
unreliability of predictor variable scores (e.g., Bohrn-
stedt & Marwell, 1978; Busemeyer & Jones, 1983; Dun-
lap & Kemery, 1988), (d) predictor variable intercorrela-
tion (Dunlap & Kemery, 1988), and (e) magnitude of
the moderating effect in the population (e.g., Stone-Ro-
mero & Anderson, 1994; Stone-Romero et al., 1994; see
Aguinis, 1995, for a review of factors affecting MMR
power and potential courses of action regarding low MMR
power situations). In general, however, these simulation
studies have only considered the effects of a limited num-
ber of variables that are presumed to influence MMR
power. For example, Dunlap and Kemery (1988) investi-
gated the effects of just two factors: (a) multicollinearity
(i.e., degree of predictor intercorrelation), and (b) pre-
dictor score unreliability. More recently, Stone-Romero et
al. (1994) manipulated only three design-related factors:
(a) proportions of cases in two moderator variable-based
subgroups, (b) total sample size, and (c) magnitude of
moderating effect. Likewise, Stone-Romero and Anderson
(1994) also varied only three factors: (a) total sample
size, (b) unreliability of predictor variable scores, and
(c) magnitude of moderating effect.

Purpose of the Present Study

In view of the critical implications of low MMR power
for applied psychology theory and practice and of the
limited focus of many previous studies; the purpose of
this study was to address several prior deficiencies and
extend the results of previous simulation research on
MMR power.

The study differed from previous research in three re-
gards. First, although factors affecting MMR power have
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typically been examined in the context of continuous mod-

erator variables (e.g., Aiken & West, 1991; Evans, 1985;

McClelland & Judd, 1993), the present study's concern

was with dichotomous moderators (e.g., gender or minor-

ity status), which are variables typically studied by ap-

plied psychologists (e.g., personnel selection research-

ers ). Note that although the investigation of factors affect-

ing MMR power to detect dichotomous moderator

variables could possibly be considered analytically, empir-

ically mimicking specific design-related conditions typi-

cally present in research using MMR provides an explana-

tion for the numerous recent failures to gather support for

sound, theory-based hypotheses regarding dichotomous

moderators.

Second, in the study we assessed the effects of predictor

variable range restriction on the power of MMR to detect

moderating effects. Range restriction has interested indus-

trial and organizational psychologists and other social sci-

entists for nearly a century (Pearson, 1903). One reason

for this interest is that range restriction is a pervasive

phenomenon in applied psychological research, especially

in research conducted in field settings (Cook & Campbell,

1979; Guion, 1991; Linn, 1968). For example, personnel

selection procedures are a major cause of range restriction

(Thorndike, 1949, pp. 169-176). Decisions regarding

which individuals to select for an opening are frequently

based on their standing on predictor variable AT (e.g., test

of job aptitude): Only those who obtain a score that ex-

ceeds a specific cutoff point (a) are selected, leading to

explicit range restriction on AT. As a result, in tests of

relationships between the predictor X and criterion Y (e.g.,

measure of job performance), data will be available only

for individuals whose scores on X exceed the defined

cutoff score a (Thorndike, 1949).

Range restriction has important implications for the

ability of MMR to detect moderating effects (i.e., MMR

power). More specifically, in the presence of range restric-

tion on predictor variable X, the variance of X -Z scores

in a range-restricted sample, sj;".z (where the asterisk rep-

resents a statistical estimate derived from a range-re-

stricted sample) will be lower than the variance of X • Z

scores in the unrestricted population, v\.7_, and this will

affect the ability of MMR to detect a moderating effect.

The reason for the predicted decrease in MMR power is

that, in testing for a moderating effect, the null hypothesis

of /3X.Z = 0 will be rejected only if the squared semipartial

correlation between Y and the product term X-Z (i.e.,

r\-(x-z.xz<) differs from zero. In this situation, K2 for the

model that includes the interaction term will be greater

than R2 for the model that considers only the main effects

of X and Z (Cohen & Cohen, 1983). However, note that

because the magnitude of ry(X.zxz> is determined, in part,

by the variances of X, Y, and Z (Lord & Novick, 1968;

Nunnally & Bernstein, 1994), restriction of range on one

or more of these variables will lead to a sample estimate

of the squared semipartial correlation coefficient,

r\\x.zxz), that underestimates pl(X-z.xz> (i-e., the squared

semipartial correlation coefficient in the population; Guil-

ford & Fruchter, 1973; Kelley, 1923; Otis, 1922; Thorn-

dike, 1947). In summary, the second purpose of the pres-

ent research was to investigate the extent to which the

degree of predictor variable (X) range restriction lowered

the power of MMR to detect a moderating effect.

Third, unlike several previous simulation studies, this

study considered not only the main effects but also the

interactive effects of a number of research-related factors

that may influence MMR power. This is a very consequen-

tial issue because when MMR is used in industrial and

organizational psychology research (e.g., validation re-

search), investigators often encounter situations in which

several of the factors known to affect power adversely

(e.g., small total sample size, unequal sample sizes across

dichotomous moderator-based subgroups, and predictor

variable range restriction) are present simultaneously

(Schmidt, Hunter, Pearlman, & Hirsh, 1985). Note that

although the main effects of some of the aforementioned

artifacts (e.g., total sample size) are well-known, the esti-

mation of all their potential interactive effects is intracta-

ble mathematically. Accordingly, as noted earlier, the third

contribution of the present research was to investigate

empirically the interactive effects of five factors on MMR

power. Our simulation involved the manipulation of the

following variables: (a) predictor variable range restric-

tion, (b) total sample size, (c) sample sizes of the two

subgroups associated with a dichotomous moderator vari-

able, (d) predictor variable intercorrelation, and (e) mag-

nitude of the moderating effect.

Method

Overview

The present study involved the manipulation of five variables

that often serve to reduce MMR power: (a) predictor variable

range restriction, (b) total sample size, (c) sample sizes in two

subgroups associated with a dichotomous moderator variable,

(d) predictor variable intercorrelation, and (e) magnitude of

the moderating effect. Monte Carlo simulations were conducted

in which the levels of these variables were manipulated concur-

rently to assess their main and interactive effects on MMR power

for situations in which there is a dichotomous moderator vari-

able. The study's dependent variable was the proportion of times

that MMR revealed the presence of a moderating effect.

Manipulated Parameters

Range restriction. The degree of range restriction on a con-

tinuous predictor variable (X) was operationally defined using

the following ratio: range of scores in the sample divided by

range of scores in the population, hereinafter referred to as the
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range ratio (RR). RR took on values of 1.00, .80, .40, and .20

so as to represent situations varying from no range restriction

(i.e., RR = 1.00) to a very severe degree of range restriction

in which the range of scores in the sample is only 20% of that

in the population (i.e., RR = .20).

Total sample size. The total size of the sample on which

the MMR analyses were based was set at either 60 or 300. These

values cover the range typically found in applied psychology.

For instance, Lent, Aurbach, and Levin (1971) found that the

median sample size in 1,500 validation studies was 68. More

recently, Russell et al. (1994) conducted a meta-analysis that

included the 138 validation studies of personnel selection sys-

tems published in the Journal of Applied Psychology and Per-

sonnel Psychology between 1964 and 1992 and ascertained that

the median sample size was 103 (C. J. Russell, personal commu-

nication, February 21, 1996).

Proportion of cases in Subgroup 1. In a study involving a

dichotomous moderator variable (Z), the total number of cases in

a sample equals the sum of the number of cases in each of the

two moderator variable-based subgroups, n\ for Subgroup 1 (Z =

1) and n2 for Subgroup 2 (Z = 2). Thus, the proportion of cases

in Subgroup 1 (i.e., p.) is n^ + N. This proportion was set at

values of .1, .3, and .5 so as to represent reasonably the range of

proportions that are possible in any study. Moreover, note that

these proportions are typical in studies that test for the effects

of dichotomous moderator variables in personnel psychology (cf.

Hunter, Schmidt, & Hunter, 1979; Trattner & O'Leary, 1980).

Correlation between predictor variable and moderator vari-

able (predictor intercorrelation). The correlation between the

predictor variable (X) and the moderator variable (Z) (i.e., pxz)

was set at levels of .20, .40, and .80. These values were chosen

so as to include what might be regarded as a low, medium, and

high degrees of multicollinearity between the predictors.

Magnitude of moderating effect. As in recent simulations

(e.g., Stone-Romero & Anderson, 1994; Stone-Romero et al.,

1994), the magnitude of the moderating effect in the population

(referred to hereinafter as effect size; ES) was operationally de-

fined as the absolute difference between the PYX levels for the

two moderator variable-based subgroups (i.e., Ipra-( i) - Pnm\)-
The size of this difference was set at levels of .00 (i.e., no effect),

.20 (i.e., small effect), .40 (i.e., medium effect), and .60 (i.e.,

large effect). Converted to Cohen's (1988, pp. 410-412) effect

size metric/2 (see also Aiken & West, 1991, p. 157), these

values correspond to f2 levels of .000, .010, .075, and .145,

respectively. Note that Cohen (1988) uses the labels small, me-

dium, and large for/2s of .020, .150, and .350. However, because

the present simulation included parameter values that were as-

sumed to mimic realistically those encountered by applied psy-

chologists concerned with detecting the effects of dichotomous

moderators, we did not include ES values larger than .145.

Summary. Table 1 provides a summary of the parameters
that were manipulated in the simulation and the levels taken on

by each such parameter. The manipulations of the independent

variables led to a design having a total of 648 cells or conditions

(i.e., 4 (RR) X 2 (N) X 3 (p,) X 3 (Pxz) X 3 (pnm) X 3

(prxm)).

Simulation Procedure and Dependent Variable

Simulation procedure. The simulations were conducted on

50 Mhz IBM-compatible personal computers with QuickBASIC

Table 1

Values of the Manipulated Parameters

parameter

RR
N

Pi
Pxz
Pram

Pnai

Values assumed by par:

Level 1

.2
60
.1
.2
.2
.2

Level 2

.4
300
.3
.4
.4
.4

imeter in the simulation

Levels

.8

.5

.8

.8

.8

Level 4

1.0

Note. RR = range ratio on predictor variable X; pt = proportion of

cases in Subgroup 1 (i.e., n, + N); PXZ = correlation between predictor

variables X and Z; pyxm = correlation between Y and X for Subgroup

1 (i.e., Z - 1); pYxm — correlation between Y and X for Subgroup 2

(i.e., Z = 2).

4.5 software programs. Taken together, these programs have

been shown to be accurate in (a) generating variables with

specified properties (e.g., normally distributed and with speci-

fied intercorrelations), and (b) testing for moderating effects

through assessing the statistical significance of the unstandard-

ized regression coefficient of the X • Z term (i.e., null hypothesis

of 0x-z = 0). The Appendix includes a description of the pro-

grams used, as well as the results of checks on their accuracy.

A total of 1,000 samples was drawn for each of the 648

conditions in the simulation. For each such sample, we used

MMR to test for the existence of a moderating effect. The null

hypothesis of no moderating effect was tested using a two-tailed

test and a nominal Type I error rate (a) of .05.

Dependent variable. For each of the 648 cells of the design,

we determined the proportion of times which the MMR analysis

revealed the presence of a moderating effect (i.e., by rejecting

the null hypothesis of /3x-z = 0). This proportion is equivalent

to statistical power in cases in which there actually is an effect

in the population, that is, the proportion of times which a false

null hypothesis has been rejected. Note, however, that when

there is no moderating effect in the population (i.e., Pnc(n =

Prxm, ES = 0) the proportion of times that the null hypothesis

is (falsely) rejected represents Type I error. Thus, for the cells

in which prxai = PYXUI, the rejection rate should be .05 (i.e.,

the preset nominal Type I error rate).

Results

Rejection rates for the null hypothesis of no moderating
effect of Z are reported in Tables 2 and 3 for all the
cells in the design. In view of the large number of power
estimates that are reported in these tables, we used a
general linear modeling (GLM) strategy to simplify the
description of the study's results concerning the main and
interactive effects of the manipulated variables on MMR
power.

Regression of Power on Variables Manipulated in

the Simulation

Prior to regressing the empirically obtained MMR re-
jection rates on values of the manipulated parameters, we
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Table 2

Power To Detect Moderating Effect and Type I Error Rates as a. Function of Range Restriction on X, Magnitude of the

Moderating Effect in the Population, and Predictor Variable Intercorrelation for N = 60

Range ratio_

.2

.2

.2

.2

.2

.2

.2
2

.2
A
A

.4

.4

.4

.4

A

A
A

.8

.8

.8

.8

.8

.8

.8

.8

.8

PYX,

.2

.2

.2

A
A

A

.8

.8

.8

.2

.2

.2
.4
.4
.4
.8
.8
.8
.2
.2
.2
.4

.4

.4

.8

.8

.S

Pxt

.2

.4

.8

.2
A

.8

.2

.4

.8

.2

.4

.8

.2

.4

.«
.2
.4
.8

.2

.4

.8

.2

.4

.8

.2

.4

.8

1.00

.032

.050

.05S

.079

.102

.088

.492

.496

.492

.067

.054

.056

.055

.044

.048
.332
.347
.344
.195

.198

.173

.074

.081

.079

.059

.046

.043

Pi =

.80

.052

.050

.050

.060

.078

.079

.369

.395

.380

.046

.062

.052

.054

.052

.049

.280

.281

.278

.092

.101

.088

.045

.044

.038

.047

.048

.055

= .1

.40

.047

.055

.036

.055

.070

.063

.311

.315

.304

.055

.044

.042

.053

.046

.053

.208

.235

.255

.049

.046

.036

.023

.028

.026

.047

.047

.055

.20

.04;

.047

.052

.073

.060

.065

.249

.272

.252

.052

.035

.039

.040

.053

.053

.224

.220

.198

.022

.022

.021

.015

.021

.016

.058

.055

.042

1.00

.047

.051

.053

.121

.122

.112

.734

.740

.717

.114

.093

.097
.056
.053
.043
.489
.490
.476
.631
.644
.586
.318
.343
.322
.046
.048
.047

Pi :

.80

.060

.056

.042

.102

.093

.093

.592

.567

.591

.074

.078

.094

.05S

.051

.051

.338

.350

.361

.400

.411

.426

.209

.210

.217
.060
.055
.041

= .3

.40

.047

.043

.047

.074

.094

.090

.406

.388

.445

.050

.064

.064

.056

.048

.056

.252

.236

.272

.224

.214

.244

.102

. 1 2 1

.111

.04S

.047

.050

.20

.049

.048

.065

.078

.062

.089

.310

.339

.342

.044

.055

.064

.044

.043

.051

.224

.230

.245

.147

.150

.144

.068

.099

.102

.036

.045

.040

1.00

.047

.055

.048

.no

.127

.131

.749

.788

.739

.130

.139

.123

.043

.065

.050

.477

.492

.449

.764

.734

.743

.465

.482

.472

.048

.047

.053

Pi =

.80

.047

.039

.039

.085

.098

.090

.562

.592

.614

.098

.119

.102

.061

.045

.061

.317

.362

.367

.578

.604

.661

.336

.340

.358
.042
.038
.060

= .5

.40

.063

.060

.050

.085

.081

.083

.352

.411

.462

.062

.075

.081

.040

.040

.046

.216

.238

.286

.365

.357

.472

.186

.176

.251

.053

.044

.052

.20

.045

.049

.050

.078

.068

.079

.287

.311

.386

.060

.058

.079
.058

.056

.048

.141

.164

.246

.278

.300

.357

.144

151
.159
.047
.057
.044

Note. PYKH) — PYX for Z — I, pyxw = PYX for Z = 2, pi = proportion of scores in Subgroup I (i.e., nt -^ N). Cells showing Type I error rates are
italicized (i.e., £5 - 0). Cells showing power rates for no range restriction and equal number of scores across subgroups are boldface and may be
used for comparison (i.e., baseline) purposes.

conducted the following two types of transformations.

First, as recommended by Aiken and West (1991), we

centered all the predictors so as to ease the interpretation

of the resulting regression coefficients. Second, because

the MMR power function is nonlinear (cf. McClelland &

Judd, 1993), GLM-based regression coefficients may be

affected adversely (i.e., biased) by scaling artifacts.

Hence, we linearized the power function by transforming

the empirically derived power estimates shown in Tables

2 and 3, which are expressed in proportion metric, using

an arcsin square root transformation (Winer, Brown, &

Michels, 1991, p. 356, case ii). One should note, however,

that Tables 2 and 3 show the untransformed rejection rates

for all the conditions in the simulation, including the cells

for which the moderating effect size was zero in the

population.1

In adopting a GLM approach to modeling the data gen-

erated by the simulation, we regressed the transformed

power estimates on the main and interactive effects of

the manipulated parameters of (a) range restriction on

predictor X (i.e., the range ratio; RK), (b) total sample

size (N), (c) proportion of cases in Subgroup 1 (i.e., pt

= «i/AT), (d) degree of predictor variable intercorrelation

(i.e., Fisher's Z transformation of pxz), and (e) magnitude

of the moderating effect in the population (i.e., the abso-

lute value of the difference between the Fisher's Z scores

of PYX( i ) and prX(2>; ZD). Note that the dependent variable

in these analyses was the arcsin square root of the power

of MMR to detect a moderating effect (i.e., a transforma-

tion of the proportion of times that the simulation led to

the rejection of a false null hypothesis of no moderating

effect). Thus, this GLM analysis used data from only the

432 cells in the design for which there actually was a

moderating effect (i.e., pYX(t) * Pi-x<2 )) .

1 Although not the focus of the present research, a perusal of

Tables 2 and 3 indicates that rejection rates for cells correspond-

ing to no moderating effect were close to the a priori specified

Type I error rate of .05. This can be observed for virtually all

216 conditions for which pyx(,, - Prxm ~ -"0 0-e-> ES = ")•
Thus, the design artifacts manipulated in the present study do
not seem to have artificially increased Type I error rates.
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Table 3

Power To Detect Moderating Effect and Type I Error Rates as a Function of Range Restriction on X, Magnitude of the

Moderating Effect in the Population, and Predictor Variable Intercorrelation for N = 300

PYxm

.2

.2

.2

.2

.2

.2

.2

.2

.2

.4

.4

.4
A
A
A
.4

.4

.4

.8

.8

.8

.8

.8

.8
.8
.8
.8

Prxw

.2

.2

.2
.4
.4
.4
.8
.8
.8
.2
.2
.2
.4
A
A
.8
.8
.8
.2
.2
.2

.4

.4

.4

.8

.8

.8

Pxz

.2
A

.8
.2

.4

.8
2
.4
.8
.2
.4
.8
.2
.4

.«

.2

.4

.8

.2

.4

.8
,2
.4
.8
.2
.4
.8

1.00

.055

.058

.040

.196

.210

.196

.958

.958

.962

.171

.187

.184

.046

.053

.036

.811

.808

.808

.943

.944

.942

.656

.657

.651

.054

.055

.043

Pi :

.80

.048

.051

.064

.139

.160

.162

.846

.865

.861

.102

.120

.129

.049

.055

.044

.620

.637

.622

.742

.777

.767

.381

.408

.389

.044

.038

.053

= .1

.40

.046

.045

.046

.102

.118

.098

.655

.701

.676

.074

.074

.069

.049

.064

.047

.436

.448

.456

.386

.440

.415

.202

.197

.185

.052

.048

.053

.20

.054

.060

.051

.102

.104

.124

.568

.560

.575

.083

.070

.051

.050

.057

.050

.358

.395

.392

.263

.279

.262

.113

.126

.113

.071

.042

.050

1.00

.063

.052

.056

.399

.382

.394
1.000
1.000
.999
.369
.366
.358
.047
.050
.054
.980
.973
.981

1.000
1.000
1.000
.974
.981
.978
.054
.044
.043

Rang

Pi =

.80

.039

.053

.049

.270

.255

.262

.986

.994

.994

.251

.277

.247

.067

.046

.054

.879

.906

.900

.998
:998

.998

.883

.902

.905

.045

.053

.039

;e ratio

= .3

.40

.060

.057

.053

.177

.192

.171

.915

.927

.936

.152

.164

.164

.050

.053

.047

.677

.698

.737

.910

.935

.968

.565

.663

.679

.047

.046

.059

.20

.058

.057

.051

.130

.123

.150

.829

.828

.869

.112

.131

.141

.042

.042

.042

.566

.575

.612

.771

.791

.870

.426

.443

.522

.056

.048

.041

1.00

.047

.055

.036

.448

.469

.441
1.000
1.000
1.000
.457
.431
.440
.052
.047
.032
.995
.989
.990

1.000
1.000
1.000
.993
.990
.995
.05;
.05J
.037

P\ =

.80

.043

.042

.056

.322

.302

.334

.998
1.000
.999
.300
.322
.335
.051
.050
.059
.927
.929
.951

1.000
1.000
1.000
.938
.958
.966
.049
.053
.045

.5

.40

.052

.054

.052

.173

.209

.251

.963

.966

.968

.173

.210

.210

.045

.046

.044

.748

.782

.810

.961

.972

.998

.762

.807

.873
.040
.041
.045

.20

.057

.047

.059

.163

.152

.172

.874

.892

.935

.136

.147

.188

.05;

.061

.038

.599

.651

.722

.872

.918

.978

.603

.666

.779

.058

.051

.065

Note. prxlll = pyx for Z = 1, prxat = p,K for Z = 2, p, = proportion of scores in Subgroup 1 (i.e., n, + N). Cells showing Type I error rates are
italicized (i.e., ES = 0). Cells showing power rales for no range restriction and equal number of scores across subgroups are boldface and may be
used for comparison (i.e., baseline) purposes.

The regression analysis took place in four steps. At
Step 1 of the analysis, the main effects of the five predictor
variables were forced into the equation; at Step 2, the 10
two-way interaction terms were entered; at Step 3, the
three-way interaction terms were entered; at Step 4, the
four-way interactions were entered; and, finally, at Step
5, the five-way interaction term was entered. However, the
block of three-way interaction terms accounted for .3%
of the variance in MMR power above and beyond the main
and two-way interaction effects, the four-way interaction
terms accounted for .2%, and the five-way interaction
accounted for 0%. As a result, regression coefficients for
terms higher than the second order are neither reported
in Table 4 nor discussed. The regression coefficients pre-
sented in Table 4 are for the stage at which all main and
two-way product terms were in the model.

In describing the results in table 4, we first consider
the interaction effects. The reason for this is that the exis-
tence of interaction effects implies that the main effects
of variables that enter into the interaction represent the
average of the effects of the same variables across relevant

levels of the other variables (Darlington, 1990; Jaccard
et al., 1990). The interpretation of interactions yields the
most detailed and precise information regarding the im-
pact of the manipulated parameters on power for specific
conditions. Alternatively, the interpretation of main effects
provides more generalizable, but less precise information.

To facilitate the interpretation of the interaction effects
reported in Table 4, we make reference to representative
results found in Tables 2 and 3. In addition, to ease the
interpretation of the results, we graphically display empir-
ically derived power rates in Figures 1 to 5.

Interactive Effects

Table 4 shows that the block of two-way interactions
accounted for 16.9% of the variance in MMR power
above and beyond the variance accounted for by the main
effects. A perusal of Table 4 indicates that there were
interaction effects for (a) range ratio by moderating effect
magnitude, (b) range ratio by total sample size, (c) total
sample size by moderating effect magnitude, (d) moderat-
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Table 4

Moderated Multiple Regression Analysis: Regression of Power on Manipulated Parameters

Step
and variable

1. Main effects
RR
N
Pi
Zpxz
ZD

2. Two-way interactions
RR X ZD
RR X N
RR x Zpa
RR x pt
N X ZD
ZD x p,
ZD x ZpX7
N X p,
N X Zpxz

Zpxz X />,
3. Three-way interactions
4. Four-way interactions
5. Five- way interaction

b

0.5338
0,0025
0.9708
0.0317
1.6527

1.212
0.001

-0.102
0.166
0.006
2.300
0.087
0.002
0.000
0.178

SEb

.0230

.0000

.0445

.0191

.0200

.0633

.0002

.0603

.1409

.0002

.1227

.0526

.0004

.0002

.1169

B

.210

.371

.197

.015

.747

,173
.057

-.015
.011
.321
.170
.015
.058
.004
.014

F ff2 Afi2

.779** .779**
538.56**

1,674.63**
475.00**

2.76
6,809.03**

.948** .169**
366.26**

39,41**
2.87
1.39

1.253.58**
351.70**

2.74
41.45**

0.67
2.32

.951** .003**

.953** .002**

.953** .000

Note, b = unstandardized regression coefficient; B = standardized regression coefficient; RR = range
ratio on predictor variable X; p\ = proportion of scores in Subgroup 1 (i.e., n\ -*- N)', Zpxz = Fisher's Z
transformation of predictor intercorrelation (pxz); and ZD = moderating effect magnitude (absolute difference
between Fisher's Z scores for prxm and /JCT<2>), The regression coefficients shown are for the stage at which
all main and two-way product terms are in the model (intercept = 1.082). Three-way, four-way, and five-
way interactions accounted for less than 1% of variance above and beyond main and two-way interaction
effects on power. Consequently, they were not included in the model.
**/>< .001.

ing effect magnitude by subgroup proportion, and (e)
subgroup proportion by total sample size. Next, we de-
scribe and graphically illustrate each of these interactions.

Range Ratio X Moderating Effect Magnitude Interac-
tion. The range ratio (RR) by moderating effect magni-
tude (ZD) interaction depicted in Figure 1 shows that the

- ES = Small — ES= Medium -»• ES = Large

1.00

0.90

0.80

__ 0.70
W
3 0.60o
°- 0.50
K
£ 0.40

0.30

0.20

0.10

0.00
.2 .4

Selection Ratio

.8 1.0

Figure 1. Interactive effects of RR (range ratio on X ) and ZD
(magnitude of the moderating effect) on moderated multiple
regression (MMR) power. ES = effect size.

predictor variable range restriction had a greater impact in
decreasing power when the magnitude of the moderating
effect in the population was larger. For instance, when the
effect size was large, no range restriction (i.e., RR = 1.0)
yielded an acceptable MMR power of .79, whereas a range
ratio of .20 decreased MMR power to .48. However, when
the effect size magnitude was small, power was already
low when there was no range restriction (i.e., MMR power
= .22), and the introduction of range restriction (e.g., RR
= .20) lowered the rejection rates, but the relative impact
was smaller because the values were already near the
chance level (i.e., .05).

Range Ratio X Total Sample Size interaction. The
results reported in Tables 2 and 3 and those displayed in
Figure 2 provide a basis for understanding the nature of
the range ratio (RR) by total sample size interaction. The
range ratio has a different impact on power at total sample
size levels of 60 and 300: For AT = 60, MMR power is
low overall (.35 or lower). As a consequence, downward
shifts in RR do not lead to marked decreases in power.
However, for N = 300, there is a considerable decrease
in power as RR shifts from 1.0 to .20, that is, MMR
power decreases from .74 to .44.

Total Sample Size X Moderating Effect Magnitude in-
teraction. The results presented in Figure 3 show that,
regardless of the level of the moderating effect magnitude
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1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20
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.2 .4 .8 1.0

Selection Ratio

Figure 2. Interactive effects of RR (range ratio on X) and
total sample size on moderated multiple regression (MMR)
power.

o.oo

y Proportion = .1 —• Proportion — .3 "*" Proportion = .5

Small Medium

Effect Size Magnitude

Large

Figure 4. Interactive effects of ZD (magnitude of moderating
effect) and pi (proportion of cases in Subgroup 1) on moderated
multiple regression (MMR) power.

(ZD), statistical power is greater for a total sample size
of 300 than it is for N = 60. It should be noted, however,
that changes in ZD have a linear impact on MMR power
when N = 60, but this is not the case when N = 300. For
example, if a sample of N — 300 is used, shifting from
a small to a medium moderating effect increases MMR
power from .21 to .69, whereas using a sample of N =
60, the same change in the moderating effect magnitude
increases MMR power to a much smaller degree (i.e.,
from .08 to .24).

Moderating Effect Magnitude X Subgroup Proportion
interaction. The results in Figure 4 show that across
all values of moderating effect magnitude (ZD), when
subgroup proportion (p,) = .1 power is uniformly lower

than when p\ = .3 or .5. Also, a proportion of .3 does not
have such a detrimental effect on power as a proportion of
.1. For instance, given a large moderating effect, a propor-
tion of .5 yielded MMR power of .69, whereas a propor-
tion of .3 resulted in a comparable MMR power of .74.

Subgroup Proportion X Total Sample Size interaction.
Figure 5 displays how unequal subgroup proportions and
total sample size interactively influence MMR power. This
figure shows that for a total sample size of 60, an increase
in subgroup proportion from .1 to .5 led to only a modest
increase in power (from .15 to .31). Also, when the total
sample size was 300, a number that would typically be
considered adequate in applied psychology, a shift in sub-
group proportion from .1 to .5 led to an MMR power

*N = 60 —N =300 1

Small Medium

Effect Size Magnitude

Large

Figure 3. Interactive effects of ZD (magnitude of moderating
effect) and total sample size on moderated multiple regression
(MMR) power.
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N = 60 — N = 300

.1 .3
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.5

Figure 5. Interactive effects of p, (proportion of cases in Sub-
group 1) and total sample size on moderated multiple regression
(MMR) power.
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change from .42 to .70. This illustrates that even in the

presence of a somewhat large total sample size, if sub-

group sample sizes are unequal, MMR power may be

inadequate to detect some moderating effects.

Main Effects

The results reported in Table 4 indicate that four of the

five manipulated parameters affected power. Not surpris-

ingly, our results showed that MMR power increased with

increases in total sample size and increases in moderating

effect size.

More interestingly, MMR power dropped as the range

ratio decreased. For example, Table 2 shows that in the

presence of a large moderating effect, predictor intercorre-

lation of .40, equal proportions across groups (i.e., p, =

.5), and total sample size of 60, the absence of range

restriction (i.e., RR = 1.00) yielded an acceptable MMR

power of .734. However, for the same conditions (also

shown on line 20), a range ratio of .80 decreased power

to .604, a range ratio of .40 lowered it further to .357,

and an even lower range ratio of .20 led to MMR power

of.30.

Finally, replicating results reported by Stone-Romero

et al. (1994), MMR power decreased to the extent that

the proportion of cases in moderator variable-based sub-

groups deviated from .5. For instance, a perusal of Table

3 (i.e., N ~ 300) shows that there are drastic decreases

in MMR power when subgroup proportion decreases from

.5 to .1. However, there is a more marked decrease when

this proportion shifts from .3 to .1 as compared with the

.5 to .3 change.

Discussion

The overall purpose of this study was to examine the

power of MMR to detect moderating effects under a num-

ber of conditions that are common in many empirical

studies in applied psychology. We assessed the main and

interactive effects of predictor variable range restriction

(operationally defined as the range ratio; RR), total sam-

ple size, sample sizes in two subgroups associated with

a dichotomous moderator variable (i.e., p,), predictor

variable intercorrelation (i.e., Pxz), ar|d magnitude of the

moderating effect (i.e., ZD) on MMR power. In the para-

graphs that follow, we detail the implications of our

findings.

Main Effect of Predictor Variable Range

Restriction

The implications regarding predictor variable range re-

striction are particularly interesting because no previous

research had empirically examined the effects of this arti-

fact on the power of MMR to detect dichotomous moder-

ating effects. The present results indicate that decreases

in the range ratio lead to marked decreases in power. In

general, across all levels of the other manipulated vari-

ables, as the range ratio decreased, so did MMR power.

Thus, even when the other conditions that are critical for

the detection of moderating effects are optimal, range

restriction leads to substantial decreases in power. For

example, for a medium moderating effect, subgroup pro-

portion of .5, total sample size of 300, and no range

restriction (i.e., RR = 1.00), MMR power is .99. How-

ever, for the same optimal (and rare) levels of moderating

effect magnitude, subgroup proportion, and total sample

size, decreases in RR to .80, .40, and .20 reduce power

to .94, .80, and .67, respectively.

The impact of range restriction is even more noticeable

in situations more typically encountered in applied psy-

chological research (e.g., personnel selection). For exam-

ple, if the moderating effect magnitude is small, subgroup

proportion is .1, and total sample size is 300, MMR power

equals .73 when there is no range restriction (i.e., RR =

1.00). As RR decreases to .80, .40, and .20, MMR power

decreases to .51, .32, and .25, respectively. Thus, the ef-

fects of range restriction on MMR power are considerable

and, consequently, predictor range restriction is a factor

that cannot be overlooked in future efforts to estimate the

effects of moderator variables using MMR.

Main Effects of Additional Manipulated Variables:

Replication and Extension of Previous Research

Several previous studies investigating continuous pre-

dictor variables and continuous moderator variables have

used Monte Carlo simulation methods to assess the impact

of such variables as sample size and effect size on MMR

power (e.g., Dunlap & Kemery, 1988; Evans, 1985;

Stone-Romero & Anderson, 1994; Stone-Romero et al.,

1994). Unlike most such studies, the present research was

concerned with the effects of such variables on MMR

power in situations in which there is a continuous pre-

dictor variable and a dichotomous moderator. The results

of our research are largely consistent with those of studies

that investigated continuous moderator variables: Small

sample size, small moderating effect magnitude, and de-

partures from sample size equality across moderator-

based subgroups have a detrimental impact on MMR

power.

In addition, our study's results add to the extant knowl-

edge base concerned with the detection of moderating

effects using MMR by providing empirically derived

power rates for a large number of conditions typically

encountered by MMR users. Trattner and O'Leary (1980)

provided tables showing sample sizes needed to achieve

a statistical power level of .80 in tests of differences in

validity coefficients across subgroups. However, the Tratt-
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ner and O'Leary tables do not consider the impact of, for
example, range restriction. Thus, researchers using these
tables in situations of range-restricted samples may over-
estimate the probability of detecting a population moder-
ating effect. Overcoming this likely problem, Tables 2 and
3 allow for estimating the power of MMR analysis under
various conditions of range restriction, total sample size,
sample sizes across moderator-based subgroups, predictor
intercorrelation, and moderating effect magnitude. Conse-
quently, researchers can use the information presented in
these tables to estimate power levels a priori in designing
research in which moderated regression will be used to
assess moderating effects. Moreover, the information
shown in Tables 2 and 3 may be used to assess power
levels on a post hoc basis in studies that have been con-
ducted without an a priori power analysis. If the resulting
power estimate is low, researchers should interpret null
findings with caution and not easily dismiss the existence
of a hypothesized moderating effect.

Admittedly, the range of values in Tables 2 and 3 may
not cover all possible situations encountered by applied
psychologists. However, because they consider the impact
of additional artifacts, they provide a definite improve-
ment over the tables available at present (i.e., Trattner &
O'Leary, 1980).

Interactive Effects of Manipulated Variables

Our study's results augment existing knowledge con-
cerning the detection of moderating effects in yet a third
regard. In several previous simulation studies, such vari-
ables as sample size, effect size, and predictor variable
intercorrelation were manipulated in isolation or in pairs.
By contrast, our study examined the interactive effects of
five independent variables on MMR power. A noteworthy
finding of our study is that the manipulated variables have
interactive (i.e., nonadditive) effects on MMR power. The
block of two-way interactions accounted for 16.9% of the
variance in MMR power above and beyond the effects of
the main effects. Converting this value to Cohen's (1988)
metric yields an effect size of/2 = 3.25 (see Aiken &
West, 1991, p. 157 or Cohen & Cohen, 1983, p. 161, for
the equation used to compute/2). It should be noted that
Cohen's (1988) reviews as well as comprehensive meta-
analytic reviews in most areas of the literature in social
sciences, education, and business indicate that an effect
size of/2 = .350 should be considered large (Aiken &
West, 1991; see Chapter 8). The magnitude of the inter-
active effects shown in Table 4 is over nine times larger
than what is conventionally considered to be a large effect.
The practical implication of such sizable interactive ef-
fects is that even if the conditions in research designed
to detect moderating effects are very favorable from the
standpoint of one or more of the variables that determine

MMR power (e.g., large total sample size), the presence
of an unfavorable level of one or more of the other vari-
ables that influence power (e.g., low subgroup proportion
and range ratio levels) will result in power levels that are
far below the .80 standard recommended by Cohen
(1988). Next, we detail and illustrate the implications of
these results for the detection of moderating effects in
applied psychology.

Failures of previous studies to detect moderating ef-

fects. It is interesting to consider our results regarding
the interactive effects of various artifacts on MMR power
within the context of recent research that estimated the
effects of dichotomous moderator variables using MMR
(e.g., Cortina et al., 1992; Hattrup & Schmitt, 1990;
Schmitt et al., 1993; Wohlgemuth & Betz, 1991). For
instance, Hattrup and Schmitt (1990) failed to find a mod-
erating effect of gender on the relationship between test
scores and job performance in a study in which there were
marked differences in the sample sizes of the male and
female subgroups, resulting in a very low proportion of
cases in the female subgroup. Their MMR analysis led to
the conclusion that the criterion-related validity of the test
did not differ across the two subgroups. However, results
of the present study as well as those of a simulation by
Stone-Romero et al. (1994) suggest that, largely because
of the differences in the subgroup proportions, the power
to detect a gender-based moderating effect in the Hattrup
and Schmitt study was approximately .25. Assuming that
such research as Cortina et al. (1992), Hattrup and
Schmitt (1990), Schmitt et al. (1993), and Wohlgemuth
and Betz (1991) is representative of a larger body of
research in which attempts to detect moderating effects
have failed, the present study's results suggest that the
power of many studies that have tested for moderating
effects using MMR may have been inadequate. That is,
because large differences in subgroup proportions seem
to have been largely ignored in previous research, many
moderating effects have probably gone undetected.

In addition to having power problems resulting from
unequal proportions of cases in the moderator variable-
based subgroups, the Hattrup and Schmitt (1990) study
also suffered from the problem of "explicit selection on
the predictor tests for males" (p. 460). Considering this
fact in conjunction with the results of our simulation re-
garding the effects of range restriction on MMR power
suggests that the power of the Hattrup and Schmitt study
to detect a potential gender-based moderating effect was
likely considerably below .25. More precisely, the present
study's results suggest that the probability that the same
moderating effect would be detected in the Hattrup and
Schmitt study was very close to .05. We emphasize that
the null findings reported by Hattrup and Schmitt repre-
sent only one of the many examples that could have been
used here to illustrate how study-related artifacts such as
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those considered by our simulation can serve to reduce
statistical power to unacceptably low levels. Low power
seems to be a pervasive problem in research aimed at the
estimation of moderating effects, and we do not intend
to devalue Hattrup and Schmitt's otherwise excellent
study (see DeShon & Alexander, 1994, for additional
examples).

Overall, what the results of our study suggest is that
for the combined levels of range restriction, sample size,
and so forth that are common in research in industrial and
organizational psychology (DeShon & Alexander, 1994),
educational psychology (Linn, 1983), and in other fields,
it is likely that the power to detect moderating effects
using MMR is unacceptably low (i.e., far below the .80
level recommended by Cohen, 1988). Also, the combina-
tion of such problems as low sample size, range restric-
tion, and departures of subgroup proportions from .5 can
lead to power levels that approach mere chance levels
(i.e., .05).

Finally, it appears that the results of our simulation
provide a very reasonable explanation of the inability of
many previous studies to detect moderating effects, even
though the attempts to detect such effects were often
guided by sound, theory-based predictions. Hence, given
the present findings, it should come as no surprise that
moderator variables have been viewed as being elusive
(e.g., Zedeck, 1971) and that moderating effects found
in any single study have proven difficult or impossible to
replicate (Smith & Sechrest, 1991).

Inability of selective strategies to solve power prob-

lems. Aguinis (1995) proposed several possible strate-
gies for overcoming low power situations in personnel
psychology and human resources management research.
For example, one such strategy is the well-known and
often difficult to implement increase in total sample size.
However, another implication of the results regarding the
interactive effects of the manipulated variables is that, in
any given study, attempts to enhance the probability of
detecting moderating effects that rely on the use of a
single strategy (e.g., increasing total sample size) may
not be successful. Thus, in research aimed at estimating
moderating effects, our results highlight the importance
of fully considering a wide range of design issues prior
to the point when data are collected. If samples are too
small, subgroup proportions are unequal, predictor vari-
ables suffer from range restriction, and so forth, existing
moderating effects are very likely to go undetected.

Potential Limitations of the Present Study

The purpose of this study was to assess the simultane-
ous impact of five research design-related artifacts on the
power of MMR to detect dichotomous moderating effects.
In designing and conducting the simulation, practical con-

siderations led to choices concerning (a) the nature of
the data generated by the simulation, and (b) the values
assumed by the manipulated parameters.

Regarding the nature of the generated variables, it
should be acknowledged that this simulation is limited by
(a) the use of the correlation model in which variances
are equal in each group (i.e., X and Y were generated as
normal deviates), and (b) the assumption that selection
takes place in a top-down fashion. Regarding Point (a),
the ratio of Y to X variance was held constant across the
two moderator-based subgroups. However, as Alexander
and DeShon's (1994) recent simulation demonstrated, the
presence of a moderating effect of a dichotomous variable
causes a violation of the assumption of homogeneity of
error variances. The typical effect of this violation is a
decrease in power to detect a moderating effect, especially
in the presence of (a) unequal sample sizes across moder-
ator-based subgroups, and (b) small total sample size (see
Aguinis & Pierce, 1996, for a review). Interestingly, as
noted by Alexander and DeShon, the violation of the ho-
mogeneity of error variance assumption is virtually guar-
anteed given that (a) the Y to X variance ratio is equal
across subgroups, and (b) a hypothesized moderating ef-
fect exists. This has implications for the results of our
study. Specifically, because our simulation mimicked ac-
tual situations in which MMR is used to detect the effects
of dichotomous moderators using MMR, it also emulated
the systematic violation of this assumption. The net effect
of this violation would be to reduce MMR power. How-
ever, we do not regard this as an important threat to the
validity of our conclusions. The reason for this is that the
generated power estimates were derived under conditions
of heterogeneity of error variance that parallel those that
exist in empirical research aimed at the detection of di-
chotomous moderator variables (cf. DeShon & Alexander,
1994).

Regarding Point (b), the range restriction manipulation
was implemented in a top-down fashion. Admittedly, se-
lection may not always be performed in a strict top-down
fashion. For example, some top-ranked applicants may
not accept a job offer (Murphy, 1986), or personnel spe-
cialists may use a banding approach to selection (Aguinis,
Cortina, & Goldberg, 1997; Cascio, Outtz, Zedeck, &
Goldstein, 1991). Nevertheless, our choice was guided
by two considerations. First, strict top-down selection is
the typical procedure mimicked in Monte Carlo studies
(e.g., Aguinis & Whitehead, 1997; Millsap, 1989). Sec-
ond, although selection may not be implemented in a
strict top-down fashion, selection systems are typically
structured to use top-down selection. Admittedly, the ob-
tained MMR power rates are valid for top-down selection
situations and departures from this situation may affect
the precision of specific power rates shown in Tables 2
and 3. However, the overall conclusions of our research
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remain unchanged: MMR power is influenced by the main
and interactive effects of such variables as predictor vari-
able range restriction, sample sizes across moderator-
based subgroups, and unequal proportions across modera-
tor-based subgroups.

As regards the manipulation of parameter values, we
had to make certain choices because the design of the
simulation required generating 1,000 samples for each of
the cells of the design. Even with the manipulation of only
five variables, our study's design involved 648 separate
conditions. Performing the simulations required a very
large number of calculations and a substantial amount of
computing time. As a consequence of limits in the range
of values of the parameters used in our study, some of
the manipulated variables did not cover the full range of
possible values. Thus, questions might be raised regarding
the construct validity of our simulation because of what
Cook and Campbell (1979) referred to as the confounding
of constructs with levels of constructs. For example, our
study used only two N values (i.e., 60 and 300). Conse-
quently, our results regarding the effects of N on MMR
power cannot be generalized across the full range of val-
ues that N might assume in a given empirical study. Al-
though we recognize that our choice of values for manipu-
lated variables may somewhat limit the generalizability
of our findings, we do not regard this as a serious threat
to our study's conclusions. The reason for this is that, in
planning our simulation, we chose values for the manipu-
lated parameters that were consistent with those that are
likely to be found in many research contexts (e.g., valida-
tion research in personnel selection). Thus, we believe
that our results can be generalized to numerous research
contexts in which research and practitioner psychologists
use MMR to test for the effects of dichotomous moderator
variables. In addition, they can be used to anticipate the
impact of the manipulated artifacts on MMR power.

Research Needs

There are at least two issues that remain unresolved
and deserve future research attention. First, the present
simulations used the same range ratio values for both
moderator-based subgroups. In the absence of a moderat-
ing effect in the population, differential degrees of range
restriction across subgroups may result in an artificial
increase in Type I error (Jaccard et ah, 1990). However,
the degree to which Type I error will be artificially in-
creased needs to be examined empirically. Alternatively,
in the presence of a moderating effect in the population,
differential range restriction may either increase the Type
I error rate or yield lower statistical power as compared
with an equal degree of range restriction across sub-
groups, depending on (a) whether the relationship be-
tween X and Y is stronger in one subgroup than in the

other, and (b) whether the lowest range ratio occurs in
the subgroup having the strongest predictor-criterion rela-
tionship (cf. Alexander & DeShon, 1994). Therefore, ad-
ditional simulations are needed to investigate the degree
to which either a is artificially increased or power is
reduced by differences in subgroup proportions and dif-
ferences in effect sizes.

Second, our study used statistical power as the depen-
dent variable of interest. The choice of power as the de-
pendent variable was guided by the frequently reported
failure to detect hypothesized moderating effects and the
need to investigate factors that affect power (Cronbach,
1987; Smith & Sechrest, 1991). An alternative approach
would be to focus on Type I error rates and to investigate
other artifacts under which MMR might lead researchers
to conclude that there are moderating effects when, in
reality, there are no such effects on the population. Al-
though some investigators have argued that research from
this perspective is necessary (e.g., Dunlap & Kemery,
1988), the manipulated variables in the present simula-
tions did not lead to undue increases in Type I error rates
(see Footnote I) . Nevertheless, as previously stated, fu-
ture research should investigate the extent to which a is
unduly increased in the presence of differential predictor
variable range restriction.

A Closing Comment

The results of this study showed that MMR power is
influenced by the main and interactive effects of such
variables as predictor variable range restriction, sample
sizes across moderator-based subgroups, and unequal pro-
portions across moderator-based subgroups. Conse-
quently, we urge researchers to be more sensitive to these
methodological artifacts in studies aimed at estimating
moderating (i.e., interaction) effects using MMR. Unless
they are, it seems highly likely that many existing moder-
ating effects will go undetected in future studies. As a
result, researchers may erroneously conclude that theories
hypothesizing the interactive effects of independent vari-
ables are invalid and practitioners may inappropriately
use personnel selection tests that predict performance dif-
ferentially for various subgroups.
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Appendix

Computer Programs and Key Accuracy Checks

Computer Programs

The simulations were conducted using QuickBASIC 4.5 programs

adapted from Aguinis (1994), Alliger (1992), and Stone-Romero et al.

(1994). For the present study, a subroutine named "TrivarGenerate"

was written to generate the point biserial correlation between the contin-

uous predictor X and the dichotomous moderator Z. This subroutine

generates random samples of size A' for the variables X, Y, and Z from

a population with specified correlations pyxut, PYX\T,-, and pxz. First, for

Subgroup 1, TrivarGenerate uses the Box-Muller method (Box &

Muller; 1958) to generate random normal values for variables X and Y

and the correlation prxi\)- Then, using the same method, it generates

normal values for variables X and Y and the correlation between these

two variables for cases in Subgroup 2 (i.e., PYXW)-

To manipulate the degree of predictor intercorrelation pxz, a constant

K was added to values of X for the cases for which Z = 2. Because

X values are normally distributed (mean zero, unit variance), the con-

stant K is equivalent to the mean X score for cases for which Z = 2

(i.e., Xz=2}- To compute K = Xz-2, a r-statistic equivalent to the speci-

fied point biserial correlation coefficient (pX7.) for a predefined N is

obtained with Equation 8.15.1 presented by Hays (1988, p. 311). Note

that K takes on a different value for each combination of values of

total sample size, sample size in Subgroup 1, sample size in Subgroup

2, and pxz-

Once samples of values for variables X, Y, and Z are generated with

specified correlations pYX< \), pw<2). and p%z- range ratios are manipulated

using conditional statements of the type i f X ( j ) < = SEL THEN GOTO,

where SEL is the truncation point on variable X. This branching state-

ment specifies that only X scores above SEL should be retained (and

the accompanying scores on Z and Y). If the X score selected randomly

is smaller than SEL, then the conditional loop directs the program to

generate a new value, until it generates an X score that is larger than

SEL. Because X is normally distributed, the values of SEL were -.84,

.25, and .84, normal scores marking off the top 80%, 40%, and 20% of

the distribution. For the cells in which there was no selection, the com-

mand line referring to SEL was omitted, and scores were generated from

the full population range.

Key Accuracy Checks

The accuracy of the programs was thoroughly examined through sev-

eral manipulation checks. The strategy used was to compute statistics

from the generated sampling distributions and to compare them with

(a) their expected values (a function of population parameters specified

in the program), (b) expected standard errors of relevant statistics, and

(c) results obtained using programs written by other researchers. For

example, to test the manipulation of pxz = .30, the rxz values from 400

samples of N = 68 (n, = n2 = 34) were recorded. The mean sample

correlation was .296, and the standard deviation of the rxz$ was .109.

This standard deviation corresponds to an expected S, of .110 (i.e.,

E(Sr) = [1 - p2]/N''). For the same parameters, a program used by

Callender and Osburn (1988) yielded a similar ST of .115. Analogous

tests were conducted for several values of N and correlations among X,

Y, and Z. The results of all such tests showed that key accuracy (validity)

estimates derived from the programs were generally within ~ .005 of

their expected values.
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