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The authors conducted a 30-year review (1969–1998) of the size of moderating effects of categorical
variables as assessed using multiple regression. The median observed effect size (f 2) is only .002, but
72% of the moderator tests reviewed had power of .80 or greater to detect a targeted effect conventionally
defined as small. Results suggest the need to minimize the influence of artifacts that produce a downward
bias in the observed effect size and put into question the use of conventional definitions of moderating
effect sizes. As long as an effect has a meaningful impact, the authors advise researchers to conduct a
power analysis and plan future research designs on the basis of smaller and more realistic targeted effect
sizes.

Using multiple regression to assess the effects of categorical
moderator variables (i.e., slope differences across groups) involves
a regression equation that examines the relationship between a
predictor X (e.g., preemployment test scores) and categorical mod-
erator Z (e.g., gender) with a criterion Y (e.g., a measure of job
performance such as supervisory ratings). If the moderator Z is
binary (i.e., two categories), then the moderated multiple regres-
sion (MMR) equation is as follows:

Y � �0 � �1X � �2Z � �3X � Z � �, (1)

where �0 is the intercept, �1 is the regression coefficient for X, �2

is the regression coefficient for Z, �3 is the regression coefficient
for the product term that carries information about the interaction
between X and Z, and � is a normally distributed random error term
(Aguinis, 2004; Cohen, Cohen, West, & Aiken, 2003; Zedeck,
1971). Rejecting the null hypothesis that �3 � 0 indicates that Z
moderates the relationship between X and Y. Stated differently, the
slope of Y on X differs across values of Z (e.g., women and men)
and, in this particular example, the preemployment test X predicts

performance differentially for women and men. Note that although
this illustration addresses the binary moderator variable gender, the
MMR model allows the categorical moderator to take on any
number of levels (e.g., a moderator with three levels could be
ethnicity coded with African American, Latino/a, and White cat-
egories; Aguinis, 2004; West, Aiken, & Krull, 1996).

MMR is the method of choice for testing hypotheses about
moderating effects of categorical variables in a variety of research
domains such as job performance (e.g., Peters, Fisher, &
O’Connor, 1982; Tubbs, 1993), job satisfaction (e.g., Vecchio,
1980), training and development (e.g., Ford & Noe, 1987; Latack,
Josephs, Roach, & Levine, 1987), employee turnover (e.g., Bartol
& Manhardt, 1979), preemployment testing (e.g., Bartlett, Bobko,
Mosier, & Hannan, 1978; Sackett & Wilk, 1994), performance
appraisal (e.g., Campion, Pursell, & Brown, 1988), compensation
(e.g., Bloom & Milkovich, 1998), organizational citizenship be-
haviors (e.g., Van Dyne & Ang, 1998), team effectiveness (e.g.,
Uhl-Bien & Graen, 1998), perceived fairness of organizational
practices (e.g., Schaubroeck, May, & Brown, 1994; Tepper, 1994),
self-efficacy (e.g., Eden & Zuk, 1995), job stress (e.g., Williams,
Suls, Alliger, & Learner, 1991), and career development (e.g.,
Ibarra, 1995), among others (see Aguinis, 2004, and Stone-
Romero & Liakhovitski, 2002, for additional illustrations). In fact,
it may be difficult to find a research domain in applied psychology
and related fields in which researchers have not tested hypothe-
sized effects of categorical moderator variables.

In spite of the pervasive interest in moderators and the theory-
based expectation that moderators should be found, many re-
searchers have concluded that moderating effects do not exist in a
number of research domains (e.g., Chaplin, 1997; Schmidt, 1988,
2002; Schmidt & Hunter, 1981; Wigdor & Garner, 1982). How-
ever, several simulation studies using Monte Carlo methodology
have led to the conclusion that numerous design, measurement,
and statistical artifacts bias observed moderating effects down-
wardly (e.g., Aguinis, 1995; Aguinis & Stone-Romero, 1997;
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Bobko & Russell, 1994; Russell & Bobko, 1992). Therefore, these
artifacts, which are often unavoidable in field settings, may lead
researchers to make the sample-based conclusion that there is no
moderation when in fact there is a moderating effect in the
population.

The failure to detect a moderating effect is an important problem
in applied psychology because erroneous decisions have the po-
tential to affect people in very personal ways. For example, erro-
neous decision making can have particularly detrimental effects on
people’s careers in such areas as performance management, train-
ing and development, and personnel selection. More generally, not
detecting moderating effects has detrimental consequences for
theory development because researchers may discard incorrectly
hypotheses and models including conditional relationships.

Present Study

As noted above, simulation work published mainly in the 1990s
has concluded that several design, measurement, and statistical
artifacts produce a downward bias in the observed moderating
effect size vis-à-vis its population counterpart. In other words, the
simulation literature suggests that observed moderating effects in
published studies are small. However, at present, there is no
comprehensive review of the size of moderating effects in pub-
lished research. Thus, the first goal of the present study was to
answer the following question:

Question 1: What is the size of observed moderating effects of
categorical variables in applied psychology and management pub-
lished research?

Answering this question will allow researchers to understand the
magnitude of observed effect sizes across research domains. Also,
this information will help researchers understand what may be
realistic targeted effect sizes to use in conducting a priori power
analyses to help guide the planning of future studies.

A related question is whether the magnitude of observed mod-
erating effect sizes has increased over the past 30 years. The
increased sophistication and steady development of theory, to-
gether with the routine inclusion of research methodology and
statistics courses in graduate programs in psychology and related
fields (e.g., Aiken et al., 1990), suggests that the magnitude of
moderating effects reported in published research is likely to have
increased over time. Stated differently, the improvement in theory
regarding the operation of moderator variables, combined with
better knowledge regarding efficient research methodology, is
likely to have resulted in larger effect sizes in more recently
published studies. Thus, a second goal of the present study was to
test the following hypothesis:

Hypothesis 1: There will be an increase in the magnitude of
observed moderating effects over time.

A third issue relates to the impact of measurement error on the
observed moderating effect sizes. Measurement error is one of the
determinants of the downward bias in observed effect sizes vis-à-
vis population counterparts (Fisicaro & Lautenschlager, 1992).
Thus, the third goal of the present study was to answer the
following question:

Question 2: What would the size of moderating effects of categorical
variables be in applied psychology and management published re-
search if the studies were replicated under conditions in which the
predictor X and the criterion Y have perfect reliability?

Answering this question will allow researchers to learn whether
effect sizes computed based on error-free measures are larger than
observed moderating effect sizes (which are computed on the basis
of fallible measures). We did not expect that construct-level effect
sizes (i.e., computed on the basis of error-free measures) would be
substantially larger than observed effect sizes because measure-
ment error is only one of several factors that influence effect sizes.
Moreover, it is the interactive effects among the various artifacts
that produce the largest reduction in effect sizes (Aguinis &
Stone-Romero, 1997). In short, although construct-level effect
sizes should be larger than observed effect sizes, we did not expect
the difference to be substantial.

A fourth issue relates to the ongoing concern about the low
power of MMR to detect moderating effects (Aguinis, Boik, &
Pierce, 2001). Specifically, there is a need to understand more
clearly the relationship among targeted effect sizes, statistical
power, and sample sizes reported in published research. Accord-
ingly, a fourth goal of this research was to answer the following
question:

Question 3: What is the a priori power of MMR to detect moderating
effects of categorical variables in applied psychology and manage-
ment published research?

Answering this question will allow researchers to understand the
relationship between targeted effect sizes and power given the
sample sizes reported in published research.

A related fifth goal of the present study was to learn the extent
to which applied psychology and management published research
has had the ability to detect effect sizes conventionally considered
as small, medium, and large (cf. Cohen, 1988). Stated differently,

Question 4: Do MMR tests reported in applied psychology and
management published research have sufficient statistical power to
detect moderating effects conventionally defined as small, medium,
and large?

Answering this question will allow researchers to learn about
statistical power values specifically vis-à-vis moderating effect
sizes that are conventionally defined as small, medium, and large.

Method

Sample of Studies

We reviewed all articles published from 1969 to 1998 in Journal of
Applied Psychology (JAP), Personnel Psychology (PP), and Academy of
Management Journal (AMJ). We selected these three journals because they
are among the most influential publications devoted to empirical research
in applied psychology and management (Starbuck & Mezias, 1996). In
addition, these journals have a reputation of enforcing the highest meth-
odological standards. Thus, the resulting effect sizes should be liberal.
Stated differently, we expected that given the methodological rigor and
emphasis on theory of AMJ, JAP, and PP, the effect sizes of studies
published in these outlets should be as large or larger than those of studies
published in other applied psychology and management journals. The
criteria for including studies in the review were as follows: (a) at least one
MMR analysis was included as part of the study, (b) the MMR analysis
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included a continuous criterion, (c) the MMR analysis included a contin-
uous predictor, and (d) the MMR analysis included a categorical
moderator.

Study Identification and Accuracy Checks

James C. Beaty located all relevant studies published between 1969–
1998 by performing a manual search of each issue of AMJ, JAP, and PP
using the criteria outlined above. This search resulted in a total of 106
articles. The list of these articles can be obtained by contacting Herman
Aguinis. Virtually every article reported more than one MMR analysis. The
total number of reported MMR analyses was 636.

Herman Aguinis conducted a random check of 10 journal issues to
assess the completeness of the review and statistics extracted from the
articles. The check resulted in 100% agreement with results obtained by
James C. Beaty.

Computation of Effect Size and Statistical Power

General considerations. As expected, the majority of the published
articles did not include all the information needed to compute effect sizes.
The vast majority of articles reported sample size across moderator-based
subgroups. However, fewer reported predictor–criterion correlations, and
even fewer reported information regarding within-group variances. We
conducted a systematic effort to contact each of the authors to obtain
additional statistics not included in the articles. Contact information for
authors was obtained from the following sources: (a) information provided
in the article, (b) Society for Industrial and Organizational Psychology
1999 membership directory, and (c) Academy of Management membership
directory (available online at http://www.aomonline.org/). As noted above,
our review identified a total of 106 articles, including 636 MMR analyses.
Of this total number of MMR analyses, after contacting authors directly,
we had information regarding sample size across moderator-based sub-
groups for 507 (79.72%) analyses, information regarding sample size and
predictor–criterion correlations across moderator-based subgroups for 261
(41.04%) analyses, information regarding the variance of the predictor X
within moderator-based subgroups for 151 (23.74%) analyses, and infor-
mation regarding the variance of the criterion Y within moderator-based
subgroups for 173 (27.20%) analyses.

Although there are interactive effects, sample size and predictor–
criterion relationships across moderator-based subgroups have been iden-
tified as the two most influential factors on the observed effect size (cf.
Aguinis et al., 2001; Aguinis & Stone-Romero, 1997). Also, correlations
based on observed scores reflect the impact of other factors known to affect
parameter estimates such as measurement error and expected ratio of
sample variance to population variance (i.e., truncation). Thus, including
the 261 MMR analyses for which information regarding sample size and
correlations is available results in an empirical estimate of the distribution
of effect sizes, but the precise manner in which these values have been
affected by factors known to influence effect sizes (e.g., measurement
error, truncation) remains unknown.

An additional consideration is that effect sizes may be affected by
whether the moderator was the focus of the study. For example, a re-
searcher may test and report results of an MMR analysis even though it is
not a focus of the research (e.g., to test for equal slopes before conducting
a covariance analysis). And, hypothesized moderating effects are likely to
be larger than nonhypothesized moderating effects. Thus, James C. Beaty
reviewed the description of each of the 261 MMR analyses and coded them
as to whether each moderator test was specifically hypothesized. There
were fewer than 10 tests for which there was not certainty as to whether the
test was the focus of the research, so Herman Aguinis also read the
description for each of these analyses independently. There was complete
agreement between Herman Aguinis and James C. Beaty regarding these
MMR tests. The result of this content analysis yielded 257 (98.5%) tests

that were specifically hypothesized. Given that virtually all tests were
hypothesized and it would not be meaningful to compare whether the set of
257 hypothesized effects is larger than the set of 4 nonhypothesized effects,
we decided to conduct the analyses based on the entire set of 261 tests.

Computation of effect size. In the case of MMR, an effect size metric
that can be used across diverse studies and measurement scales is f 2. This
measure of effect size describes the strength of the moderating effect.
Specifically, f 2 is the ratio of systematic variance accounted for by the
moderator relative to unexplained variance in the criterion (Aiken & West,
1991). Aiken and West (1991, p. 157) described how to compute f 2 for the
case of a continuous moderator variable under the assumption of homo-
geneity of error variance. Their equation is not appropriate, however, if the
homogeneity of error variance assumption is violated. Accordingly, we
developed a modified f 2 that is appropriate for situations with categorical
moderator variables when there is heterogeneity of error variance. The
derivation of this modified f 2 is an additional unique contribution of the
present study and is included in Appendix A. Although the equations are
complex, a computer program available at http://carbon.cudenver.edu/
�haguinis/mmr/ performs all needed computations online.

To compute construct-level f 2, we recomputed f 2 for a hypothetical
replication of the study conducted under conditions in which X and Y have
perfect reliability. Accordingly, the value of �observable (i.e., correlation
between the observable scores for predictor X and the criterion Y in each
moderator-based subpopulation) is larger in the error-free replication than
it is in the original study, and this is why f 2 is expected to be larger. In
other words, we asked the following question: How would the properties of
the study (i.e., effect size f 2) change if the study was replicated under
conditions in which X and Y have perfect reliability?

Note that Bobko and Rieck (1980) and Raju and Brand (2003) examined
standard errors of sample correlations corrected for measurement error as
well as properties of statistical tests based on the corrected correlations.
Those studies revealed that tests of population correlations that are based
on corrected sample correlations are, in general, no more powerful than are
tests based on uncorrected sample correlations. In the present study we ask
a slightly different question. Our question is, How large of an impact does
measurement error have on effect sizes? That is, if two studies are equiv-
alent in all respects except for measurement error, then what is the expected
difference in their effect sizes? Our question concerns the impact of
measurement error, not the impact of correcting for measurement error.

Finally, we did not have reliability information for all the MMR tests.
The mean reliability for the 46 tests (i.e., 18%) for which this information
was available for X was .80, and the mean reliability for the 50 tests (i.e.,
19%) for which this information was available for Y was .81. Thus, we
computed construct-level effect sizes using the reported reliability when
available and used a value of .80 for the remaining effect sizes. Appendix
B includes a technical description of the computation of construct-level
effect sizes.

Computation of statistical power. Aguinis and colleagues (Aguinis &
Pierce, 1998b; Aguinis, Pierce, & Stone-Romero, 1994) developed com-
puter programs to estimate the power of MMR. These programs, written
using empirically based algorithms, allow researchers to estimate the
power of MMR tests for given values for factors known to affect power
(e.g., moderating effect magnitude, sample size across moderator-based
groups). Despite the fact that these programs are available and aid research-
ers in the quest for moderating effects, Aguinis et al. (2001) noted that they
suffer from four limitations. These limitations exist because the programs
are based on algorithms derived from empirical (i.e., Monte Carlo) studies
(Aguinis & Pierce, 1998b, is based on Aguinis & Stone-Romero, 1997;
Aguinis et al., 1994, is based on Stone-Romero, Alliger, & Aguinis, 1994).
First, these programs do not include all the factors known to affect the
power of MMR. Second, these programs are based on Monte Carlo studies
that included only a limited range of values for factors affecting the power
of MMR. Third, these programs assume that restriction on the continuous
predictor X takes on only the simplest form of variance reduction (i.e.,
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truncation). Fourth, users of the programs can only compute power in
situations in which the categorical moderator has two levels.

To overcome the aforementioned limitations of empirically derived
algorithms to compute power of MMR to detect categorical moderator
variables, Aguinis et al. (2001) developed a theory-based approximation.
Therefore, in the present study we used the Aguinis et al. (2001) theorem
to compute power corresponding to a range of f 2 values. This approxima-
tion is included in Appendix C (see Aguinis et al., 2001, for a detailed
discussion and development of this theorem).

The effects of violating MMR’s homogeneity of error variance assump-
tion on statistical power are complex and include a possible inflation of
Type II error rates (i.e., a decrease in power) as well as, in some cases,
inflation of Type I error rates (Aguinis, 2004; Aguinis & Pierce, 1998a;
Alexander & DeShon, 1994). In computing power, we used Y variance
information for the 173 out of 261 (66.28%) MMR analyses for which this
information was available. For those analyses for which information re-
garding Y variances in moderator-based subgroups was not available, we
assumed homogeneity of error variance.

It should be noted that several authors have argued against the usefulness
of assessing power based on observed effect sizes (i.e., post hoc power
analysis; e.g., Gerard, Smith, & Weerakkody, 1998; Goodman & Berlin,
1994; Hoenig & Heisey, 2001). For example, Hoenig and Heisey (2001)
demonstrated that power based on observed effect sizes is a direct function
of the obtained p value for the test in question and that this power value
cannot provide more information than the reported p value. Consequently,
once data are collected, a power analysis provides no additional informa-
tion beyond that contained in the confidence interval (CI) around the
parameter estimate of interest. To illustrate this general principle, consider
the following scenario. A researcher conducts a study and finds that f 2 �
.0001. That is, the ratio of explained variance by the moderator to unex-
plained variance in the criterion is only one hundredth of one percent.
Conducting a post hoc power analysis based on this observed effect size
would lead to the conclusion that power is abysmal, unless sample size is
very large. But, by doing so, the researcher would be asking the question,
What would the power be to detect an effect size of .0001? Most likely,
researchers would not be interested in knowing the power for such a small
targeted effect size. An alternate explanation for the low power in this
situation is that a nonsignificant interaction was found because the popu-
lation moderating effect is small. Thus, the logical flaw in conducting a
post hoc power analysis is to posit that whatever effect size was ob-
served—no matter how small—is one a researcher would wish to find
statistically significant. As noted by an anonymous reviewer, one can
certainly perform the exercise of determining the power to detect observed
effect sizes, but finding low power in such a setting may not be a cause for
alarm.

Given the above considerations, we did not compute power based on
observed effect sizes. Instead, we computed power for each published
MMR test included in our review for targeted values for f 2 ranging from
a low of .001 to a high of .35 (i.e., a ratio of variance explained by the
moderator to unexplained variance ranging from 0.01% to 35.00%). Also,
in computing f 2 for each published MMR test, we used the sample sizes
reported in each article. The chosen range of values for f 2 is likely to
include critical effect sizes (i.e., effect sizes considered of practical and/or
scientific importance) for most applied psychology and management re-
search areas. Note that the criticality of a specific magnitude for f 2 must be
evaluated against the area of research considered, the anticipated research
outcomes, subsequent impact, and other factors. And, an effect size of .001
may not be sufficiently large to warrant detection in most research do-
mains. However, we chose to include a broad range of targeted effect sizes
for the sake of completeness.

In summary, we computed effect sizes for the 261 MMR analyses for
which sample size and predictor–criterion correlations across moderator-
based subgroups were available. We used X and Y variance information
when available and assumed homogeneity of error variance for the MMR

analyses for which this information was not available. In computing the
construct-level effect sizes (i.e., based on error-free measures), we used
reliability information when available and a value of .80 when this infor-
mation was not available. In computing power, we used targeted f 2 values
ranging from .001 to .35 to include a broad range of what can be considered
critical effect sizes in applied psychology and management research and
the sample sizes reported in each published study.

Results

Frequency of MMR Use Over 30-Year Review Period

Figure 1 shows the number of MMR analyses published in AMJ,
JAP, and PP over the 30-year period covered in our review (i.e.,
1969–1998). As can be seen in Figure 1, the use of MMR to assess
categorical moderators has remained fairly stable at approximately
20–40 analyses per year since the mid-1980s.

Question 1: Size of Observed Moderating Effects

Overall effect sizes. Table 1 shows that the overall mean
observed effect size (i.e., f 2) for the 261 analyses is .009, with a
95% CI ranging from .0089 to .0091. However, because the
distribution of effect sizes is positively skewed (skewness � 6.52,
z � 21.73, p � .01), the median effect size of .002 is a better
descriptor of central tendency. The 25th percentile is .0004 and the
75th percentile is .0053.

Comparison across journals. Next, we computed observed
effect sizes for AMJ (k � 6), JAP (k � 236), and PP (k � 19). For
AMJ, the mean and median effect sizes are .040 and .025 (SD �
.047); for JAP, these mean and median values are .007 and .002
(SD � .024); and for PP, these mean and median effect sizes are
.017 and .006 (SD � .025). Because of the high degree of skew-
ness, we normalized the distribution of effect sizes by implement-
ing the Box–Cox family of power transformations (Box & Cox,
1964). Specifically, observed effect sizes were transformed by
using the .15 root, that is (f 2).15, which resulted in an approxi-
mately normal distribution (i.e., skewness � .25, kurtosis � .63).
We then conducted an analysis of variance (ANOVA) on the
transformed effect sizes to examine possible differences across the
three journals. Results showed a statistically significant difference,
F(2, 258) � 8.71, p � .001, �2 � .06. Tukey’s honestly significant
difference (HSD) tests showed that effect sizes reported in AMJ
are larger than those reported in JAP ( p � .002) and those reported
in PP were also larger than those reported in JAP ( p � .028), but
there was not a statistically significant difference between the
mean effect size reported in AMJ versus PP.

Comparison across moderator type. Of the total 261 MMR
analyses for which we computed effect sizes, 63 addressed the
moderating effect of gender, 45 addressed the moderating effect of
ethnicity, and 153 addressed other moderators. For tests including
gender, Table 1 shows that the mean and median effect sizes are
.005 and .002 (SD � .011). For tests regarding ethnicity, the mean
and median effect sizes are .002 and .001 (SD � .002). For other
moderators, the mean and median effect sizes are .013 and .002
(SD � .031). An ANOVA based on the transformed effect size
values showed a statistically significant difference across the three
groups, F(2, 258) � 4.97, p � .008, �2 � .04. Tukey’s HSD tests
showed that effect sizes for tests of ethnicity as a moderator are
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smaller than effect sizes reported for the “other” category ( p �
.005), but there were no other differences.

Comparison across research domains. Next, we investigated
whether effect sizes differ across research domains. First, we
compared personnel selection versus other areas. Second, we com-
pared the work attitudes literature versus other areas.

Personnel selection versus other areas. Of the total 261 MMR
analyses for which we computed effect sizes, 20 specifically
addressed a personnel selection issue, whereas 241 addressed other
topics. For tests in the personnel selection domain, the mean and
median effect sizes are .010 and .001 (SD � .023). For tests in
other research domains, the mean and median effect sizes are .009
and .002 (SD � .025). An independent-samples t test using the
transformed effect sizes as the dependent variable showed no
statistically significant differences between personnel selection
and other research domains, t(259) � �0.23, p � .82.

Work attitudes versus other areas. Of the total 261 analyses,
96 tested categorical moderators with work attitudes (e.g., job
satisfaction, organizational commitment) as a criterion. For mod-
erator tests in the work attitudes domain, the mean and median
effect sizes are .005 and .002 (SD � .015). For tests not using work
attitudes as criteria, the mean and median effect sizes are .009 and
.002 (SD � .025). Results of an independent-samples t test showed
no statistically significant differences for the normalized effect

sizes comparing work attitudes with other research areas, t(259) �
�0.95, p � .34.

Hypothesis 1: Observed Effect Sizes Over Time

To test the hypothesis that moderating effects have increased in
magnitude over time, we computed Pearson’s correlation coeffi-
cient between year of publication and effect size. Results showed
a statistically significant relationship such that r(261) � .15, p �
.05. That is, more recently published studies generally report larger
effect sizes than older studies.

Question 2: Size of Construct-Level Moderating Effects

Table 1 shows summary statistics for the construct-level (i.e.,
based on error-free measures) effect sizes. Comparing results of
observed versus construct-level effect sizes indicates that the use
of error-free measures increased the overall effect size from a
median of .002 to .003 and from a mean of .009 to .017. Thus, if
X and Y are measured error-free, the median effect size increased
only by .001. Although this represents an increase of 50%, it is
small in absolute terms. This was expected, given that measure-
ment error is only one of the several design, measurement, and
statistical artifacts that influence effect sizes and that these artifacts

Figure 1. Number of moderated multiple regression (MMR) analyses of categorical moderator variables
reported in Academy of Management Journal, Journal of Applied Psychology, and Personnel Psychology
between January 1969 and December 1998. Frequencies for 1969–1976 � 0.
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have interactive effects (Aguinis & Stone-Romero, 1997). An
examination of the specific comparisons shown in Table 1 rein-
forces the conclusion that, overall, the impact of measurement
error on the absolute magnitude of effect sizes is not substantial.

Question 3: Statistical Power

Table 1 shows that the overall median moderator-based sub-
group sample size is 158. This median sample size is larger than
the median sample size of 113 reported by Salgado (1998) for
criterion-related validity studies in the personnel selection domain
published between 1983 and 1994 in JAP, PP, and Journal of
Occupational and Organizational Psychology. But, sample sizes
in the present review are not inordinately large as compared to
those reported in Salgado’s review.

Table 2 includes summary statistics for power values associated
with a broad range of targeted effect sizes given the reported
sample sizes in the studies included in our review (Appendix C
includes computational details regarding power). Results show that
effect sizes do not need to be too large to be detected. Specifically,
results in Table 2 indicate that power in published research is
sufficient (i.e., M � .84, Mdn � .90) to detect an effect size of .02.
Moreover, 72% of the tests reviewed had power of .80 or greater
to detect an effect of .02.

Table 2 also includes information on what percentage of tests
achieved power of at least .80 for each targeted f 2 value. As shown
in this table, only 21.80% of tests included in our review had
power of at least .80 to detect f 2 �.01, but 85.80% of tests had
power of .80 or greater to detect f 2 � .03, and each test had power
of .80 or greater to detect f 2 � .35.

Figure 2A shows a graph depicting the relationship between
effect size and mean power based on the data presented in Table 2
but limited to the .001–.10 f 2 range only (it would be redundant to
include values greater than f 2 � .10, because the resulting mean

Table 1
Summary Statistics for Observed Effect Sizes, Construct-Level Effect Sizes, and Sample Sizes Across Journals, Type of Moderator,
and Research Domains (1969–1998)

Comparison

Observed effect size (f 2) Construct-level effect size (f 2) n

Mdn M (SD) 95% CI Mdn M (SD) 95% CI Mdn M (SD)

Journal
AMJ (k � 6) .025 .040 (.047) .0397–.0403 .044 .067 (.082) .0665–.0675 45 293 (652)
JAP (k � 236) .002 .007 (.024) .0069–.0071 .002 .014 (.049) .0138–.0142 158 402 (559)
PP (k � 19) .006 .017 (.025) .0166–.0174 .009 .040 (.068) .0389–.0411 101 122 (92)

Moderator type
Gender (k � 63) .002 .005 (.011) .0049–.0051 .003 .011 (.041) .0107–.0113 245 230 (208)
Ethnicity (k � 45) .001 .002 (.002) .0020–.0020 .002 .003 (.004) .0030–.0030 245 1006 (968)
Other (k � 153) .002 .013 (.031) .0128–.0132 .003 .024 (.062) .0235–.0245 90 252 (270)

Research domain (I)
Personnel selection (k � 20) .001 .010 (.023) .0097–.0103 .002 .029 (.067) .0281–.0299 88 153 (128)
Other (k � 241) .002 .009 (.025) .0089–.0091 .003 .016 (.050) .0158–.0162 158 396 (563)

Research domain (II)
Work attitudes (k � 96) .002 .005 (.015) .0049–.0051 .003 .010 (.039) .0098–.0102 351 311 (334)
Other (k � 165) .002 .011 (.029) .0109–.0111 .003 .021 (.058) .0207–.0213 158 416 (632)

Overall (k � 261) .002 .009 (.025) .0089–.0091 .003 .017 (.052) .0167–.0173 158 378 (545)

Note. Construct-level f 2 is computed based on error-free measures for X and Y (see Appendix B for computational details). AMJ � Academy of
Management Journal; JAP � Journal of Applied Psychology; PP � Personnel Psychology; k � number of moderator tests; f 2 � ratio of systematic
variance accounted for by the moderating effect relative to unexplained variance in the criterion (see Appendix A for computational details); n � sample
size for moderator-based subgroups; CI � confidence interval.

Table 2
Statistical Power to Detect Targeted Effect Sizes in Published
Applied Psychology and Management Research

Targeted effect
size (f 2)

Power

% above .80Mdn M (SD)

.001 .11 .14 (.11) 0.40

.002 .17 .22 (.16) 0.80

.003 .24 .29 (.20) 6.10

.004 .30 .35 (.22) 8.80

.005 .36 .41 (.23) 8.80

.006 .42 .46 (.24) 11.10

.007 .48 .50 (.25) 13.80

.008 .53 .54 (.25) 16.50

.009 .58 .58 (.25) 17.60

.010 .62 .61 (.25) 21.80

.020 .90 .84 (.21) 72.00

.030 .98 .90 (.21) 85.80

.040 1.00 .93 (.19) 88.90

.050 1.00 .94 (.17) 89.30

.060 1.00 .95 (.15) 90.80

.070 1.00 .96 (.14) 93.50

.080 1.00 .96 (.13) 93.50

.090 1.00 .97 (.12) 93.50

.100 1.00 .97 (.11) 93.90

.120 1.00 .98 (.10) 95.40

.140 1.00 .98 (.09) 96.60

.160 1.00 .99 (.07) 97.70

.180 1.00 .99 (.06) 98.50

.200 1.00 .99 (.06) 98.50

.250 1.00 .99 (.04) 98.50

.300 1.00 1.00 (.03) 98.50

.350 1.00 1.00 (.02) 100.00

Note. f 2 � ratio of systematic variance accounted for by the moderating
effect relative to unexplained variance in the criterion (see Appendix A for
computational details regarding f 2 and Appendix C for computational
details regarding power); % above .80 � percentage of moderated multiple
regression analyses (out of a total of 261) with a power value greater than .80.
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power is greater than .97). This graph shows that the moderator
test achieves a mean power of .80 for a targeted f 2 value of just
under .02. And, mean power reaches .90 for a targeted f 2 value of
.03. Figure 2B shows a more detailed graph of the relationship
between effect size and mean power for the lower range of the f 2

continuum (i.e., .001 to .02). This graph illustrates that, at this low
end of the f 2 range, power increases very rapidly with small
increments in the targeted effect size value. For example, mean
power increases from .17 to .62 as targeted f 2 values increase from
.001 to .01 (i.e., a change of only .09% in the ratio of variance
explained by the moderator to unexplained variance in the
criterion).

Appendix D includes an analytic description of how to deter-
mine f 2 corresponding to a specific power and sample size. The

procedure described in Appendix D involves first determining the
noncentrality parameter �. Then, f 2 is computed as follows (this
approximation becomes exact only under restrictive assumptions):

f 2 �
2�

N � 2k
, (2)

where k is the number of moderator-based subgroups and N is the
total sample size.

We implemented the calculations shown in Appendix D for the
median moderator-based subgroup sample size of 158. Given a test
including two moderator-based subgroups, results show that power
would reach .80 for a targeted f 2 � .0253. This result is consistent
with the finding discussed above that f 2 must be approximately .02
to achieve power of .80 (also, see Figure 2A).

Figure 2. Graphical representation of the relationship between targeted effect size (f 2) and power for the .001
to .10 f 2 range (A) and the .001 to .02 f 2 range (B).
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Question 4: Power to Detect Conventionally Defined
Small, Medium, and Large Effect Sizes

A number of authors (e.g., Aiken & West, 1991) have echoed
Cohen’s (1988) conventional definitions of small, medium, and
large effect sizes. For the case of f 2, Cohen (1988) suggested that
effect sizes around .02, .15, and .35 be labeled small, medium, and
large, respectively. It should be noted that Cohen (1988; see also
Cohen et al., 2003) offered the caveat that even effect sizes labeled
small can have substantial practical and theoretical importance.
Nevertheless, Cohen’s conventional definitions are used perva-
sively, particularly in literature reviews of statistical power (e.g.,
Brock, 2003; Mazen, Graf, Kellogg, & Hemmasi, 1987; Mazen,
Hemmasi, & Lewis, 1987).

As noted above, Table 2 shows that the mean power of the
MMR test to detect what is conventionally defined as a small
effect (i.e., f 2 � .02) is .84. The mean power to detect a medium
effect (i.e., f 2 � .15) is approximately .98, and the power to detect
a large effect (i.e., f 2 � .35) is 1.0.

Discussion

Given that simulation studies have demonstrated that numerous
design, measurement, and statistical artifacts produce a downward
bias in the magnitude of observed moderating effects, we expected
that observed effect sizes would be quite small. We had this
expectation despite the fact that literally hundreds of researchers in
dozens of disparate domains in applied psychology, management,
and associated fields have hypothesized such effects. Our results
show that the median effect size is .002. And, the effect size
“bandwidth” is uniformly narrow and around .002 for the areas of
personnel selection and work attitudes and for tests including the
moderating effect of gender and ethnicity. Also, computations of
the moderating effect size based on error-free measures increased
the size of the median moderating effect by only .001.

In spite of the result that observed moderating effects are small,
the present review suggests a number of more encouraging results.
First, none of the 95% CIs around the mean effect size for the
various comparisons shown in Table 1 include the value of zero.
Second, observed moderating effects have increased in magnitude
over time, albeit this positive trend is not that strong because the
correlation between year of publication and observed effect size is
only .15. Third, our results suggest that, given the sample sizes
reported in the studies reviewed, statistical power has, in general,
been sufficient (i.e., .80 or greater) to detect effects of a magnitude
of .02 or greater. And, 72% of the tests reviewed had a statistical
power of .80 or greater to detect effects of at least f 2 � .02. Fourth,
our results indicate that if an MMR test includes a moderator with
two categories (e.g., gender) and subgroup sample sizes of 158,
power would be .80 for a targeted f 2 of approximately .02. Finally,
regarding Cohen’s (1988) definitions of small (f 2 � .02), medium
(f 2 � .15), and large (f 2 � .35) effect sizes, our results indicate
that approximately 72% of the tests reviewed had sufficient power
(i.e., .80 or greater) to detect a small effect, approximately 85% of
tests had sufficient power to detect a medium effect, and 100% of
tests had sufficient power to detect a large effect. In sum, although
observed effect sizes are substantially smaller than expected, sta-
tistical power is sufficient to detect what is conventionally defined
as a small targeted effect size.

Implications for Theory

As shown in Figure 1, the use of MMR to assess the moderating
effects of gender, ethnicity, and other categorical variables is
pervasive. In fact, there are few areas, if any, in applied psychol-
ogy and management that are not researched using MMR to test
hypotheses regarding categorical moderators of a wide diversity of
variables such as gender, ethnicity, goal difficulty, organizational
unit, type of feedback, task control, training method, employment
status, type of compensation, leadership style, nationality, owner-
ship control, pay plan, and so forth. Given the small median effect
size of .002 revealed by our review, could it be that theories in all
of these research domains are incorrect in positing the operation of
moderators? Could it really be the case that literally hundreds of
researchers in dozens of disparate domains in applied psychology
and associated fields are wrong and that population moderating
effects are of such small magnitude? We cannot discard this
possibility. However, it seems more likely that the pervasive and
often unavoidable design, measurement, and statistical artifacts
decrease the observed effect sizes substantially vis-à-vis their
population counterparts. In fact, this seems to be a more plausible
explanation given the Monte Carlo evidence demonstrating the
impact of such artifacts including their interactive effects. Accord-
ingly, given the pervasive use of MMR, it is likely that numerous
hypotheses regarding moderating effects have been discarded in-
correctly over the past 30 years. Thus, an important implication for
theory development is that past failures to find support for hypoth-
esized moderators may have been due to observed effect sizes
being smaller than their population counterparts. Consequently, we
suggest that past null findings be closely scrutinized to assess
whether they may have been due to the impact of artifacts as
opposed to the absence of a moderating effect in the population.

Implications for Research and Organizational Practices

The present study has several implications for the conduct of
research aimed at assessing moderating effects. First, we urge
researchers to be more sensitive to the methodological and statis-
tical artifacts known to produce a downward bias in the observed
effect size (see Aguinis, 2004, Chapter 5, for a detailed description
of each of these artifacts). More attention to research design issues
is likely to lead to a considerable payoff in terms of increasing the
observed effect size, and consequently, the likelihood that popu-
lation effects will be detected. This is particularly true given that,
for typical observed sample sizes, power reaches .80 for a targeted
effect size of approximately only .02. But, researchers may not be
able to observe a targeted effect size of this magnitude unless
careful attention is given to design and measurement issues.

Second, we suggest that researchers become more aware of the
factors that affect the power of MMR and implement recently
developed computer programs to calculate the power of MMR in
planning a study’s design. Such programs are in the public domain
and descriptions, as well as instructions on how to obtain them, can
be found in Aguinis (2004); Aguinis and Pierce (1998b); Aguinis,
Petersen, and Pierce (1999); and Aguinis et al. (1994, 2001).

Third, the present results provide information to help evaluate
the appropriateness of Cohen’s (1988) traditional definitions of
small, medium, and large effect size in conducting power analyses
regarding moderating effects of categorical variables. First, we
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emphasize that the choice for a targeted effect size in a power
analysis should not be based on broad-based conventions but
rather on the specific research situation in hand. Cohen (1977)
himself made this recommendation almost 30 years ago in his
power analysis book when he stated that effect size distinctions are
relative “to the area of behavioral science or even more particu-
larly to the specific content and research methods being employed”
(p. 25). And, similarly, a recent editorial in AMJ (Eden, 2002)
stated that “the importance of any particular effect size depends
upon the nature of the outcome studied” (p. 845). In spite of this,
many researchers have used Cohen’s definitions of small, medium,
and large effect sizes in conducting power analyses (e.g., Mone,
Mueller, & Mauland, 1996; Sedlmeier & Gigerenzer, 1989) and,
moreover, have not acknowledged explicitly that these values are
actually based on observed effect sizes for specific, and often
limited, literature domains. Specifically, the values derived by
Cohen (1962) are based on observed effect sizes computed from
articles published in just one volume of Journal of Abnormal and
Social Psychology. More precisely, in his Method section, Cohen
noted that “the level of average population proportion at which the
power of the test was computed was the average of the sample
proportions found” and “the sample values were used to approx-
imate the level of population correlation of the test” (p. 147). And,
because Cohen’s now conventional definitions of small, medium,
and large effect sizes are based on observed values, they have been
revised over time as a consequence of subsequent literature re-
views of effect sizes in various domains. For example, for corre-
lation coefficients, Cohen defined .20 as small, .40 as medium, and
.60 as large in his 1962 Journal of Abnormal and Social Psychol-
ogy review. However, he changed these definitions to .10, .30, and
.50 in his 1988 power analysis book. The present review shows
that even if a researcher hypothesizes what can be conventionally
considered a “small” moderating effect size (i.e., f 2 � .02), and
moreover, plans the research design accordingly so that power will
be .80 to detect an effect of .02 or larger, the moderating effect
may not be found given that the median observed effect found in
our review is .002. Note, however, that the finding that the median
effect size is only .002 does not necessarily suggest that this is the
targeted value that should be used in computing power. True
effects are not necessarily important effects and the targeted value
should be chosen on the basis of the anticipated impact of the
expected effect size for theory and/or practice. Nevertheless, our
results show that as long as a small effect has a meaningful impact
for science or practice within a specific context, the implication is
that researchers should conduct a power analysis and plan future
research designs based on smaller (and more realistic) targeted
effect sizes as opposed to Cohen’s (1962) conventional definitions,
which are largely based on a review of articles published in just
one volume of one journal that did not include research from the
applied psychology and management fields.

The present study also has implications for organizational prac-
tices. For instance, assume that a particular intervention involving
participative decision making has a positive effect on a specific
group’s performance (e.g., Generation Xers) and a negative effect
on another group’s performance (e.g., Baby Boomers). Not detect-
ing this moderating effect of group membership may lead man-
agement to decide incorrectly that the intervention should be
implemented for all employees. Numerous additional examples
can be used to show that the inability to recognize conditional

relationships, including those with group membership as a mod-
erator, may lead to decision making that results in detrimental
consequences for both individuals and organizations. For example,
not detecting a moderating effect of, for instance, gender or eth-
nicity may lead to incorrect selection decisions. Moreover, it may
lead to making hiring decisions that penalize certain applicants on
the basis of group membership. Eventually, not recognizing the
presence of a moderator variable in the selection context may lead
to group-based differences in performance scores that can lead to
costly lawsuits.

Limitations

We close by discussing limitations of the present study. First,
we reviewed articles published in only three journals. Arguably,
we could have reviewed other publications in applied psychology
and management. However, our reasoning was that if effect sizes
are small in three of the most methodologically rigorous journals,
they will be at least as small in other publications. Thus, we
speculate that the present results are actually an overestimate of the
effect sizes that would be found combining AMJ, JAP, and PP
with other journals.

Second, a number of published articles did not include sufficient
information to compute effect sizes. This is a problem that is
mentioned frequently by researchers who conduct other types of
quantitative literature reviews such as meta-analysis. Therefore,
we contacted individual authors to obtain additional information.
Much to our surprise, the vast majority of authors had not kept
their data or did not have access to them. Given this situation, we
could only compute effect sizes for 261 of the 636 MMR analyses
(i.e., 41.04%). Although we computed effect sizes for fewer than
half of all the analyses reported over the 1969–1998 period, we do
not have any reasons to believe that the sample of 261 analyses is
not representative of the total population of 636.

Third, one may ask whether researchers should even bother
conducting a power analysis and attempting to detect a moderating
effect expected to be, for example, no greater than f 2 � .01. There
is no general answer to this question because, as noted above, the
specific research question within a specific research domain dic-
tates whether a specific effect size is practically or scientifically
important. For example, the fact that even small effect sizes can be
of high practical or scientific importance was illustrated by Mar-
tell, Lane, and Emrich (1996). Specifically, an effect size of 1%
regarding male–female differences in performance appraisal
scores led to only 35% of the highest level positions being filled by
women. On the basis of these results, Martell et al. concluded that
“relatively small sex bias effects in performance ratings led to
substantially lower promotion rates for women, resulting in pro-
portionately fewer women than men at the top levels of the
organization” (p. 158). Several additional illustrations of the im-
pact of what may be conventionally considered “small” effects on
science and practice are provided by Breaugh (2003), Fichman
(1999), and Olejnik and Algina (2000).

Fourth, our methodology for computing f 2 included information
relating to the continuous predictor and categorical moderator
only. Some studies included additional predictors (e.g., control
variables) in the MMR models. For example, Van Dyne and Ang
(1998) entered five categorical control variables into the equation
before the continuous predictor and categorical moderator and two
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had statistically significant regression coefficients. However, it
was not possible to compute f 2 after all predictors are included in
the regression model. This was the case because we would need, at
a minimum, the correlation matrix including all predictors and the
criterion and we would need this correlation matrix for each
moderator-based subgroup. This information is not available in the
published articles and, given our experience in trying to obtain
additional information directly from authors, it would be virtually
impossible to gather the necessary data to perform the calculations.
Specifically, values for f 2 may change if additional variables were
included in the model because the addition of predictors is likely
to decrease the amount of unexplained variance in the criterion.
Because f 2 is expressed as a ratio of explained to unexplained
variance, the inclusion of additional predictors may increase the
value for f 2 (assuming a constant relationship between the mod-
erator and the criterion). In spite of this, the substantive conclusion
that moderating effect sizes in published research are small is not
likely to change even if we had information regarding the contri-
bution of additional predictors. For example, assume the extreme
situation in which the inclusion of additional predictors decreased
unexplained variance fivefold. In this rather extreme scenario, and
assuming a constant relationship between the moderator and the
criterion, the observed median effect size would be .01, which is
still half the size of what is currently considered a “small” effect
(Cohen, 1988).

Concluding Comments

In closing, our review documents that, overall, observed mod-
erating effects are smaller than what is conventionally defined as
a small effect (cf. Cohen, 1988). As long as such small effects have
a meaningful impact for science or practice within a specific
context, we advise researchers to conduct a power analysis and
plan future research designs on the basis of smaller, more realistic,
and yet meaningful targeted effect sizes. The advantage of power
analyses that use more realistic (but nevertheless important) tar-
geted effect sizes is that the resulting research designs should be
more conducive to detecting hypothesized effects. In addition,
researchers are advised to follow recommendations on how to
minimize the impact of design, measurement, and statistical arti-
facts that have a downward bias on the effect size. Following these
strategies is likely to allow researchers to identify meaningful
moderated relationships more effectively.
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Appendix A

Computation of Effect Size: Modified f 2

The hypothesis of no moderating effect in MMR is tested by comparing

Fm �
SSI/�k � 1�

SSE/�N � 2k�
to Fk�1,N�2k

1�	 , where k is the number of moderator-

based subpopulations, N is the total sample size (across all groups), SSI is
the sum of squares due to the interaction between the categorical moderator
variable Z and the continuous predictor X (cf. Equation 1), and SSE is the
error sum of squares after fitting first-order effects and product terms. It
can be shown that conditional on X,

E�SSI� � �
i�1

k


i
2�1 � �i

2��1 � wi� � �
i�1

k

�ni � 1��i
2
i

2

�

� �
i�1

k

�ni � 1��i
isxi� 2

�
i�1

k

�ni � 1�sxi

2

(A1)

and

E�SSE� � �
i�1

k

�ni � 2�
i
2�1 � �i

2�,

where wi �
�ni � 1�sxi

2

�
j�1

k

�nj � 1�sxj

2

, 
i
2 is the variance of the observable Y scores in

the ith subpopulation, sxi

2 is the sample variance of X in the ith subpopula-
tion, ni is the sample size from the ith subpopulation, and �i is the
correlation between Y and X in the ith subpopulation.

The first term in E(SSI) reflects the k � 1 degrees of freedom associated
with SSI. The remaining terms in E(SSI) reflect variation accounted for by
the categorical moderator times continuous predictor variable interaction.
Accordingly, the effect size is

f 2 �

E�SSI� � �
i�1

k


i
2�1 � �i

2��1 � wi�

E�SSE�

�

�
i�1

k

�ni � 1��i
2
i

2 �

� �
i�1

k

�ni � 1��i
isxi� 2

�
i�1

k

�ni � 1�sxi

2

�
i�1

k

�ni � 2�
i
2�1 � �i

2�

.

If �i is written as �i � �isxi
/
i then effect size can be written as

f 2 �

�
i�1

k

wi��i � �� �2

� � �� 2 � �
i�1

k

wi��i � �� �2

� O� 1

N� ,

where

� �

�
i�1

k

�ni � 1�
2

�
i�1

k

�ni � 1�sxi

2

,

�� � �
i�1

k

wi�i,

and wi is defined in Equation A1. Note that if �i � �i
i /sxi
is constant for

all i (i.e., �1 � �� ), then f 2 � 0. To estimate effect size, sample quantities
can be substituted for population parameters.

To examine power for a selected (i.e., hypothetical) effect size, say f sel
2 ,

the quantities ni, 
i
2, and sxi

2 for i � 1, . . . , k are held fixed at their observed
values and new values �*i for i � 1, . . . , k are obtained to satisfy

f sel
2 �

�
i�1

k

wi��*i � �� *�2

� � �� *2 � �
i�1

k

wi��*i � �� *�2

. (A2)

In this article �*i was computed as

�*i � �i � �i��i � �� � for i � 1, . . . , k. (A3)

The multipliers �i, . . . , �k were selected to minimize the quantity

�
i�1

k

��i � �� �2,

where �� �
1

k
�

i�1

k
�i, subject to the constraints (a) Equation A2 is satisfied

and (b) �*i � �*isxi
/
i � [�0.99,0.99] for each i. In many cases, the

solutions for �1, . . . , �k are

� i � � for all i, where � � �
f sel

2 �� � �� 2�

�1 � f sel
2 ��

i�1

k

wi��i � �� �2�
1
2

� 1.

If f 2 is substantially smaller than f sel
2 , then the above solution may not

satisfy �*i sxi
/
i � [�0.99,0.99] for all i. In this case, the multiples �1, . . . ,

�k cannot be chosen to be identical.
If the multipliers �1, . . . , �k can be chosen to be identical, then

the modification merely adjusts the magnitude of the observed differences
among the regression coefficients but retains the relative differences.
Alternative procedures for computing �*i could be devised. The procedure
in Equation A3 was chosen because it retains the observed pattern of
regression coefficients to the largest extent possible.

Power corresponding to the selected effect f sel
2 was computed using the

algorithm described in Aguinis et al. (2001) and shown in Appendix C.
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Appendix B

Computation of Construct-Level Effect Sizes

The question to be addressed is the following: What values do effect
sizes take on if X and Y reliability are increased from original values to
1.0? Stated differently, the construct-level effect sizes show the mag-
nitude of the moderating effect when X and Y reliability are increased
from their original values (i.e., the value reported in the original article
if available or .80) to 1.0.

Denote the correlation between the continuous predictor X and
the continuous criterion Y in a subpopulation (i.e., moderator-based
category) as �true and denote the correlation between the observable
scores as �observable. If original X and Y reliabilities are 	x and 	y,
respectively, then �observable � �true

�	x	y. The value of �true was
computed as

� true � 	 min� �observable


	x	y

, 0.999� if �observable  0

max��observable


	x	y

, � 0.999� if �observable � 0

0 if �observable � 0.

After the value of �true was computed, consider that the X and Y reliabilities are
now equal to 1, rather than their original values (or 0.80). Accordingly, �observable

is now equal to �true. The new value of �observable, therefore, is larger than the
original value of �observable. The new value of �observable can be interpreted as the
observable correlation that would exist if the study could be replicated, but with X
and Y having perfect reliability. The new values of �observable are entered directly
into the equations in Appendix A to obtain the effect sizes that would exist if the
study could be replicated, but with X and Y having perfect reliability.

Appendix C

Power Approximation (from Aguinis, Boik, & Pierce, 2001, pp. 319–320)

The power of the MMR F test is

Power

� Pr�� k � 1

N � 2k�Fk�1,N�2k
1�	 �

j�1

k

y, j

2 �1 � �j
2	x, j	y, j�

	y, j
Hj � �

j�1

k�1

�jGj � 0� ,

where k is the number of moderator-based subpopulations, 
y,j
2 is the

variance of the true Y scores in subpopulation j, �j
2 is the squared correla-

tion between the true X and Y scores in subpopulation j, 	x,j is the reliability
for X in subpopulation j, 	y,j is the reliability for Y in subpopulation j, and
�j is the jth eigen-value of (C�DC)�1 C�VC;

D � Diag� 	x,j�nj � 1�

�nj � 1�2�j
x,j
2 ; j � 1, . . ., k� ;

V � Diag�
y, j
2 	x,j�1 � �j

2	x,j	y,j��nj2 � 1�

	y,j�nj � 1�2�j
x, j
2 ;j � 1, . . . , k� ;

where nj is the size of subpopulation j, �j is the ratio of the expected sample
variance of X to the population variance of X in subpopulation j, 
x,j

2 is the
variance of the true X scores in subpopulation j, and Gj for j � 1, . . . , k �
1 and Hj for j � 1, . . . , k are independently distributed chi-squared random
variables. Specifically, Hj � �2(nj � 2) for j � 1, . . . , k and Gj � �2(1,
�j) for j � 1, . . . , k � 1, where �j is a noncentrality parameter;

� j �
�u�jC��1�

2

2u�jC�VCuj
;

and uj is the jth eigen-vector of (C�DC)�1 C�VC.

Note. This appendix is adapted from H. Aguinis, R. J. Boik, & C. A.
Pierce, Organizational Research Methods, 4, pp. 291–323, copyright ©
2001 by Sage Publications. Reprinted by Permission of Sage Publications,
Inc.

Appendix D

Technical Note on Computation of f 2 for Given Statistical Power and Sample Size

This note uses the same notation as that in Appendix A. Using the results
of Khatri (1966), it can be shown that

C�C�DxC��1C � Dx
�1 � Dx

�11k�1�kDx
�11k�

�1Dx
�1.

If 
i
2 � 
2 for all i, 	xi

� 	yi
� 1 for all i, ni � n for all i, and Sxi

2 � Sx
2

for all i, then the above result can be used to show that the expected value
of the numerator quadratic form in the F statistic is

E�SSI� � E	�̂�1C�C�DxC��1C�̂1


�
1

k
�k � 1�
2�

i�1

k

�1 � �i
2� �

1

k
Sxx�

i�1

k

��i � �� �2,

where Sxx � (n � 2)Sx
2 and �i is the ith component of �1. Under these same

assumptions, the expected value of the denominator quadratic form of the
F statistic is

E�SSE� � �n � 2k�
1

k

2�

i�1

k

�1 � �i
2�.

Dividing the numerator and denominator quadratic forms by
1

k

2 �

i�1

k

�1

� �i
2� yields
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E�SSI�

1

k

2�

i�1

k

�1 � �i
2�

� k � 1 �

Sxx�
i�1

k

��i � �� �2


2�
i�1

k

�1 � �i
2�

and

E�SSE�

1

k

2�

i�1

k

�1 � �i
2�

� N � 2k.

Note that these moments are identical to the moments of a noncentral F
random variable with k � 1 numerator degrees of freedom, N � 2k
denominator degrees of freedom, and noncentrality parameter

� �

Sxx�
i�1

k

��i � �� �2

2
2�
i�1

k

�1 � �i
2�

.

Accordingly, if 
i
2 � 
2 for all i, 	xi

� 	yi
� 1 for all i, ni � n for all i,

and Sxi

2 � Sx
2 for all i, and if normality is satisfied, then the MMR F statistic

is distributed as Fk�1,N�2k,� to a first-order approximation. Furthermore,
under these assumptions, the effect size is

f 2 �

Sxx�
i�1

k

��i � �� �2

�N � 2k�
2�
i�1

k

�1 � �i
2�

�
2�

N � 2k
.

To determine the value of f 2 that corresponds to a specific power, the
following equation must be solved for �:

P�Fk�1,N�2k,�  Fk�1,N�2k
1�	 � � power,

where Fk�1,N�2k
1�	 is the 100 (1 � 	) percentile of the central F distribution

with k � 1 and N � 2k degrees of freedom. The solution to the above
equation cannot be written in closed form. The equation must be solved
numerically. After solving for �, the associated f 2 is

f 2 �
2�

N � 2k
,

which is Equation 2 shown in text.
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