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Cross-level interaction effects lie at the heart of multilevel contingency and interactionism theories. Research-
ers have often lamented the difficulty of finding hypothesized cross-level interactions, and to date there has
been no means by which the statistical power of such tests can be evaluated. We develop such a method and
report results of a large-scale simulation study, verify its accuracy, and provide evidence regarding the relative
importance of factors that affect the power to detect cross-level interactions. Our results indicate that the
statistical power to detect cross-level interactions is determined primarily by the magnitude of the cross-level
interaction, the standard deviation of lower level slopes, and the lower and upper level sample sizes. We
provide a Monte Carlo tool that enables researchers to a priori design more efficient multilevel studies and
provides a means by which they can better interpret potential explanations for nonsignificant results. We
conclude with recommendations for how scholars might design future multilevel studies that will lead to more
accurate inferences regarding the presence of cross-level interactions.
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The past quarter century or so has witnessed a growing application
of multilevel theories, designs, and analyses in applied psychology
(cf. Aguinis, Boyd, Pierce, & Short, 2011; Bliese, Chan, & Ployhart,
2007; Griffin, 2007; Hitt, Beamish, Jackson, & Mathieu, 2007; Klein,
Cannella, & Tosi, 1999; Mathieu & Chen, 2011; Rousseau, 1985).
The essence of the multilevel approach is that an outcome of interest
is conceptualized as resulting from a combination of influences em-
anating from the same level as well as higher levels of analysis.
Moreover, the multilevel approach formally recognizes that entities
(e.g., individuals) are typically nested in higher level collectives (e.g.,
teams, organizations), which leads to nontrivial theoretical and ana-
lytical implications. We conducted a systematic review of all articles
published in the Journal of Applied Psychology from 2000 to 2010,
and results show that multilevel studies have increased in frequency
rapidly. In the years 2000-2002, there was an average of three
multilevel articles published in the Journal of Applied Psychology per
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year, which has risen steadily to an average of 13 articles per year over
the 20082010 period. Aguinis, Pierce, Bosco, and Muslin’s (2009)
recent review of articles published in Organizational Research Meth-
ods between 1998 and 2007 has also documented a steady increase in
the attention paid to multilevel methodology in organizational re-
search.

The multilevel approach advances three types of relationships.'
First, there are potential lower level direct influences, such as
between individuals’ knowledge, skills, abilities, and other char-
acteristics (KSAOs) and their individual job performance. Second,
there may be direct cross-level influences, such as the effects of
group cohesion on group members’ average job performance. And
third, there may well be cross-level interactions whereby the
relationships between lower level predictors and outcomes differ
as a function of higher level factors. For example, the relationship
between individuals’ need for affiliation and their job performance
might be accentuated to the extent that they are members of more
cohesive groups. In sum, the multilevel approach in applied psy-
chology has energized the examination of joint influences of
predictors from different levels on lower level outcomes of interest
while simultaneously recognizing the fact that in organizational
settings, individuals are typically nested in higher level units and,
hence, are amenable to contextual influences.

Although multilevel investigations are drawing increased attention
to cross-level interactions, these are not really new phenomena. In
fact, arguably what we now refer to as cross-level interactions were
the focus of a debate concerning person versus situational influences

! We recognize that multilevel approaches may also consider upward
influences. However, we restrict our consideration to downward cross-
level effects in this article.
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on individuals’ behaviors (e.g., Bowers, 1973; Endler & Magnusson,
1976; see Mischel, 2004, and Pervin, 1989, for reviews). Although
varying in specific form, the consensus arising from that exchange
was that individuals’ behaviors were the result of some form of
interaction between individual and situational forces (Buss, 1977,
Mischel, 2004; Pervin, 1989; Schneider, 1983).

Historically, interactionism has usually been approached from analysis
of variance (ANOVA) and moderated multiple regression perspectives,
where situations were seen as categorical groupings or conditions that
interact with individual differences. What the multilevel approach has
contributed to this understanding is that because individuals are nested in
higher level units (e.g., groups), this nesting changes the way in which
situational factors should be conceptualized and analyzed. Rather than
viewing situations as categorical differences (or treatments), the multi-
level analytical approach can examine the influences, both direct and
interactive, of continuous higher level variables on lower level outcomes.
Of note, multilevel modeling has also been referred to as hierarchical
linear modeling (Raudenbush & Bryk, 2002), mixed-effect models (Cao
& Ramsay, 2010), random coefficient modeling (Longford, 1993), and
covariance components models (e.g., Searle, Casella, & McCulloch,
1992). In this analytical paradigm, cross-level interactions lie at the heart
of modern-day contingency theories, person—environment fit models, and
any theory that considers outcomes to be a result of combined influences
emanating from different levels of analysis (e.g., Grizzle, Zablah, Brown,
Mowen, & Lee, 2009; Wallace, Edwards, Arnold, Frazier, & Finch,
2009; Yu, 2009).

We conducted a review of published Journal of Applied Psy-
chology studies involving tests of cross-level interactions, and

Table 1
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results suggest that researchers have typically considered the in-
fluence of three types of unit-level moderators: (a) unit-level
climate; (b) ambient leadership practices directed at the unit; and
(c) other unit-level emergent states such as collective efficacy,
team empowerment, or conflict. Representative studies from the
2000-2010 decade are summarized in Table 1 (note that this table
includes additional information regarding each study, including
power analysis computations that we describe later in this article).
An example of the first type of cross-level moderator is a study by
Hofmann, Morgeson, and Gerras (2003), who found that the
individual-level relationship between the quality of leader—
member exchange (LMX) and the extent to which soldiers incor-
porated safety into their role definitions were more positive to the
extent that unit-level safety climate was more positive. Similarly,
Liao and Rupp (2005) examined how various aspects of justice
climates moderate relationships between individual-level justice
orientations and job attitudes. Illustrative of the second type of
moderator, Mathieu, Ahearne, and Taylor (2007) found that em-
ployees’ technology self-efficacy related more positively to their
actual use of technology when leaders engaged in more empow-
ering leadership behaviors toward their units. An example of the
third type of cross-level moderator was illustrated in a study by
Bliese and Jex (1999), who found that work-related stressors (e.g.,
work overload) related less negatively to job attitudes (e.g., job
satisfaction) when unit members shared higher levels of collective
efficacy beliefs. Finally, a study by Chen, Kirkman, Kanfer, Allen,
and Rosen (2007) incorporated the latter two types of cross-level
moderators, in examining how team-level empowering leadership

Selective Summary of Previous Journal of Applied Psychology Studies Testing Cross-Level Interactions

Reference Variables M M Py Py P Py Puw Yo \/Tn Y Yox Yoxw  Yow Power

Chen et al. (2007) X: Leader—-member exchange 7.18 62 .12 .00 .93 .88 .93 45 .18 A5 35 18 .02 (a = .01) 42

W: Empowering leadership (a = .05) .64

Y: Individual empowerment (a = .10) .77

Chen et al. (2007) X: Individual empowerment 7.18 62 .00 .28 .88 .97 .91 16 11 —06 35 =39 .10 (a =.01).09

W: Team empowerment (a = .05) .23

Y: Individual performance (a = .10) .37

Hofmann et al. (2003) X: Leader—-member exchange 3.76 25 39 30 .94 98 .94 39 27 48 .01 A5 25 (a = .01) .59

W: Safety climate (a = .05) .80

Y: Safety role definitions (o = .10) .88

Liao & Rupp (2005)  X: Justice orientation 525 44 11 .11 .85 81 .83 .10 .14 A2 17 =02 37 (a=.01).14
W: Organizational focus on PJ

climate (a = .05) .33

Y: Satisfaction with organization. (a = .10) .44

Liao & Rupp (2005)  X: Justice orientation 525 44 11 30 85 89 .83 .07 .24 08 —.08 30 .56 (a=.01).06

W: Supervisor focus on PJ climate (a = .05) .19

Y: Supervisor commitment (a = .10) .29

Mathieu et al. (2007) X: Work experience 2.67 221 .02 .00 .85 81 98 —.06 .00 —-.06 —23 —.14 —-23 (a=.01).10

W: Empowering leadership (a = .05) .30

Y: Technology self-efficacy (o = .10) .39

Mathieu et al. (2007) X: Technology use 2.67 221 .00 .04 .81 .74 98 .07 .18 06 20 .12 .03 (a=.01).14

W: Empowering leadership (a0 = .05) .32

Y: Individual performance (a = .10) .44

M 4.85 97 .11 .15 87 .87 91 17 .15 A1 11 .03 16 (o = .01) .22

(o = .05) .40

(o = .10) .51

Note.
Level 2 W reliability; y,, = average Level 1 direct effect;

n; = average Level 1 N; n; = Level 2 N; p, = Level 1 X ICC; p, = Level 1 YICC; p,, = Level 1 X reliability; p,, = Level 1 Y reliability; p,,,, =
H“ = SD of Level 1 slopes without predictors; v,,, = cross-level interaction; yox = direct

effect of )_(,; Yoxw = direct effect of XWj; Yo = direct effect of W;; PJ = procedural justice; ICC = intraclass correlation coefficient.
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moderated the relationship between LMX and individual-level
(psychological) empowerment and how team-level empowerment
moderated the relationship between psychological empowerment
and individual (team member—level) performance.

The common feature in all these studies is that relationships
between variables at the individual or other lower level differ as a
function of contextual features represented by the upper level
moderator. Of course, other cross-level moderators beyond the
examples noted above have been examined in the literature, but the
ones we described have been considered most frequently thus far
by researchers in applied psychology and management. Given the
increasing prevalence of cross-level interactions in applied psy-
chology theorizing and research, we argue that it is now critical to
develop a clearer understanding of what research design and
measurement factors are most likely to enable researchers to reach
sufficient statistical power levels to detect theoretically meaningful
cross-level interactions.

The advent of multilevel designs and analyses has raised several
unique challenges for researchers, not the least of which are
concerns about statistical power in the context of nested arrange-
ments. In other words, multilevel designs render traditional meth-
ods of estimating statistical power inapplicable, given the complex
nonindependence of lower level observations (Snijders & Bosker,
1999). This has been particularly problematic for the study of
cross-level interactions, for which researchers may have beliefs
about the statistical power of their tests but no way of assessing the
accuracy of such beliefs. For example, in a study of individual
safety behavior, Neal and Griffin (2006) noted that “the power of
this study to detect effects at the group level of analysis was
limited. With only 33 work groups, we only had sufficient power
to detect large effect sizes” (p. 952). Elsewhere, Grizzle et al.
(2009) lamented, “We also note that our statistical power to
identify significant cross-level and aggregate-level effects was
limited. This limitation was due to both our relatively small unit-
level sample size (n = 38) and moderately low group mean
reliability for our unit climate measure, /CC(2) = .61” (p. 1238).
Although such concerns are often voiced by multilevel scholars, to
date there has not been a means by which they can calculate the
actual power of their cross-level interaction tests (Scherbaum &
Ferreter, 2009; Snijders & Bosker, 1999). Without being able to
estimate the actual statistical power of cross-level interaction tests,
researchers stand the risks of designing suboptimal multilevel
studies, as well as erroneously concluding that meaningful sub-
stantive effects are nonexistent, both of which can potentially
undermine important substantive discoveries.

Accordingly, in the present investigation we advance a method
to calculate the power of cross-level interaction tests in multilevel
studies. Below we first outline how power considerations apply to
investigations of cross-level interactions. We then present a large-
scale simulation study that will allow us to understand the relative
impact of various research design and measurement factors on the
power to detect cross-level interactions, and we also describe a tool
that researchers can use to estimate such power a priori. We then
estimate the power of previous empirical investigations to illus-
trate the utility of the new power estimator for substantive research
in applied psychology. Finally, we conclude with recommenda-
tions for how scholars might design future studies in a manner that
maximizes statistical power and improves the accuracy of infer-
ences about cross-level interaction effects in multilevel modeling.

We should note that multilevel models come in two basic varieties,
with each concerning the lack of lower level independence of obser-
vations in some high-level grouping. One form is where lower level
entities are nested in higher level collectives (e.g., individuals in
teams). Here the lower level errors are correlated by virtue of joint
membership in the collective. The second form is akin to typical
repeated measures designs, whereby some set of entities (e.g., indi-
viduals, teams, organizations) generates scores repeatedly over time.
In this latter design, the lower level error terms not only are correlated
but are correlated in a serial manner, given their temporal nature. The
serial correlation means that the lower level unit errors are correlated
in complex ways and also implies that scaling and centering of time
are different than in nested arrangements, all of which present both
statistical and substantive challenges (cf. Biesanz, Deeb-Sossa, Pa-
padakis, Bollen, & Curran, 2004; Ployhart & Vandenberg, 2010).
Therefore, we restrict our focus to the nested multilevel designs for
this investigation. However, as we highlight below, our focus on
cross-level interactions in nested multilevel arrangements still pro-
vides important guidance for designing and conducting substantive
research in numerous applied psychology domains and, moreover,
can serve as starting point for power estimation extensions that con-
sider more complex, repeated measures and mixed-model designs.

Power in Multilevel Designs

As is well known, power refers to the ability of a test statistic to
detect an effect of a certain magnitude with a specific degree of
confidence. Generally speaking, power increases to the extent that
(a) the population effect is larger; (b) sample sizes (i.e., degrees of
freedom) increase; (c) the preset Type I error rate « is higher; (d)
predictors and criterion are measured with higher fidelity (e.g.,
reliable measures, appropriate coarseness); (e) variable distribu-
tions are not restricted; and (f) assumptions of statistical tests are
not violated (e.g., homogeneity of error variances, linear relation-
ships; see Aguinis, 2004, for single-level models and Culpepper,
2010, for multilevel models). At issue is the fact that if researchers
fail to have sufficient statistical power, they are susceptible to
Type Il errors, or the likelihood that they will falsely conclude that
given effects do not exist. Such errors can lead to suboptimal use
of resources, misguided interventions, deficient evaluation studies,
and a wide variety of other impediments to an organization’s
competitive advantage and to employee welfare.

Although challenges associated with achieving sufficient power
in single-level investigations are fairly well understood (see Agui-
nis, Beaty, Boik, & Pierce, 2005, for a review), multilevel inves-
tigations introduce additional complications. Mathieu and Chen
(2011) noted that “statistical power in multilevel designs is a
complex combination of the number of higher level units and
lower level units under investigation, the co-variances within and
between units, and a slew of other factors that are still being
investigated” (p. 631). They further submitted that factors contrib-
uting to multilevel power also differ depending on the parameters
of interest—namely, lower level direct effects, cross-level direct
effects, or cross-level interactions. This situation has led some to
simply advocate general rules of thumb for multilevel samples,
such as one should have at least 30 upper level units with at least
30 lower level entities in each (i.e., the so-called 30-30 rule; e.g.,
Kreft & de Leeuw, 1998). However, such rules of thumb are not
likely to apply universally to the wide variety of situations that
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researchers encounter. Moreover, no existing approximations to
date have allowed researchers to understand the impact of mea-
surement error on multilevel power estimates. As a result, re-
searchers cannot compute accurate a priori estimates regarding the
power for their intended designs, and when they fail to find support
for cross-level interactions, they cannot make informed interpre-
tations as to whether their findings have substantive importance or
might be attributable to low statistical power. In other words, we
simply do not know whether hypotheses about the presence of
cross-level interaction effects have been abandoned prematurely.
Therefore, we turn our attention to estimating the power of tests of
cross-level interactions in nested multilevel designs.

Raudenbush (1997), Raudenbush and Liu (2000), Snijders
(2005), and Scherbaum and Ferreter (2009) have each highlighted
some of the general issues associated with statistical power in
multilevel designs. For example, consider a typical design with indi-
vidual employees nested in groups. Using conventional nomenclature,
the relationship between a predictor and criterion at the lower level
(i.e., Level 1) of a multilevel design can be shown as

Y;=Bg + B]j(Xij*)_(j) +ry (D

where Y; is the criterion score for the ith person in group j, B, is
the intercept value for group j, B,; is the slope for group j, X;; is the
predictor score for the ith person in group j and is centered by the
group average }_(j, and r; is the Level 1 residual term such that
r; ~ N(0,07). In most applications, the regression coefficients are
assumed to be distributed jointly as random normal variables,

5] = w2 ) ®

That is, T, measures the variance of B, T,, measures the variance
of B, and 7, measures the covariance between B,; and ;. In the
single predictor case, previous research notes that a way to test for
the presence of cross-level interactions is to estimate the following
upper level (i.e., Level 2) models (Enders & Tofighi, 2007; Hof-
mann & Gavin, 1998; Raudenbush, 1989a, 1989b):

Boj = Yoo T Vm()_(; - )_() + Voz(Wj — V_V)
+ 703()_(1 - X)("V, - W) + uy; 3)

Blj:Y1()+'Yll(W/j_ V_V)J’_Mlj ()]

where u,; and u,; are residuals, or random effects, that capture
group differences after controlling for Level 2 predictors X; (group
j’s mean for X;), W, (a Level 2 covariate), and the interaction
between }_(J and W;. yq is the average Y, when group j is
average on the other predictors (i.e., X; = X and W, = W) and
Yio is the relationship between X;; — X; and Y,; when W, = W.
The effect of X; and W; on B, is captured by vy, and v,,
respectively. The interaction effect between X; and W; is rep-
resented by <yy5. In Equation 4, vy, captures the extent to which
W, relates to group differences in 3,;. The Level 2 equations can

be substituted into the Level 1 equation to yield
Yy =" t 'Yon()_(j - 5() + 'Yoz(Wj - W) + 'Y()}()_(j - )_()(WJ - W)
+ 'Ylo(Xij - Xj) + 'Yl](Xij - X])(W] - W) + Uy + ulj(Xij - )_(]) +ry
(%)

Equation 5 shows that the effect of the cross-level interaction between
W; and X, is captured by y,,. From Equation 5, we can also see that
Var(Yij|Xij) T t+ 2’701(Xij - X]) + ’711(le - X;)Z + o
(Clarke & Wheaton, 2007).

It is important to appreciate the role of centering decisions in
tests of cross-level interactions (Enders & Tofighi, 2007; Hofmann
& Gavin, 1998). The observed variance in lower level predictors
(X;;) may reflect both lower and upper level influences, the relative
extent to which can be expressed in terms of an intraclass corre-
lation index (ICC). The ICC (p,) is the ratio of between-group
predictor variance (T) relative to the total predictor variance [i.e.,
p, = 7/(t + 07)], where o7 is the variance component of the lower
level residual from a null model. A null model is one where the
variance of a lower level is partitioned into that which resides
within and between higher level units. In this fashion, ICCs can
range from O to 1. At issue is that if lower level predictor variance
is used in its raw score form (X,;) or centered on the basis of the
total sample mean, (X; — X), then it represents an intractable
blend of upper and lower level influences. Consequently, it is not
clear the extent to which an interaction involving the lower
level predictor represents an interaction between the upper level
moderator and the within-group variance of the lower level
predictor versus an interaction between the upper level moder-
ator and the between-group variance of the lower level predic-
tor. For cases where one wishes to differentiate these two types
of interactions, Hofmann and Gavin (1998) and Enders and
Tofighi (2007) both advocated that the lower level predictor be
centered within groups (X X ) and the between-group
variance ()_(_,- — X) be reintroduced as a Level 2 predictor.
Accordingly, we implemented their recommendation.

Previous researchers have developed techniques for estimating
the power of lower level direct effects and cross-level direct effects
in the context of multilevel designs (cf. Raudenbush, 1997; Sni-
jders & Bosker, 1993). Naturally, the number of lower level
entities and upper level units plays a large role, akin to total sample
size in single-level designs. Researchers often have control over,
for example, how many individuals they can sample versus how
many groups they sample. Sampling more individuals from fewer
groups is usually far less costly and logistically easier than sam-
pling a larger number of groups; however, these decisions have
implications in terms of the resulting power to detect various
effects. Generally speaking, there is a premium on the average
number of lower level entities for enhanced power to detect Level
1 direct effects, and there is a premium on the number of upper
level units for enhanced power to detect cross-level direct effects
(Raudenbush & Liu, 2000). Because researchers are often inter-
ested in testing both types of effects, they are faced with a dilemma
regarding how to best proceed.

Another key distinction for power in multi- versus single-level
designs is the percentage of criterion variance that resides within
versus between upper level units, again typically expressed in
terms of an ICC. Generally speaking, lower ICCs favor the power
to detect Level 1 direct effects, whereas higher ICCs favor the
power to detect cross-level direct effects (Raudenbush & Liu,
2000). As is true for single-level designs, the power associated
with tests in multilevel studies naturally is influenced by the
magnitude of the population effect selected, the preset a level
adopted, variable reliabilities and other measurement properties,
variable ranges and their distributions, and the extent to which
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assumptions associated with statistical tests are met.? Inevitably,
specifying the number of parameter estimates and their complex
relationships needed for conducting power analyses in multilevel
designs can be a daunting task. Although the calculations associ-
ated with weighing various trade-offs are far from straightforward,
available tools such as Optimal Design (Raudenbush, 1997; Spy-
brook, Raudenbush, Congdon, & Martinez, 2009) and Power IN
Two-level designs (PINT; Bosker, Snijders, & Guldemond, 2003)
make them more accessible to researchers while also permitting
researchers to incorporate cost factors (Scherbaum & Ferreter,
2009). Unfortunately, Optimal Design is limited to estimating the
power of treatment effects, and PINT requires users to provide
estimates of a large number of parameters that may be difficult to
obtain a priori (e.g., variances and covariances of residuals). More-
over, neither tool incorporates the ability to consider the impact of
variable reliabilities, nor are they capable of providing power
estimates for cross-level interactions. To address these needs, we
provide a mechanism for addressing these shortcomings.

Our discussion thus far has highlighted that the parameters of
interest in multilevel designs have direct consequences regarding the
requisite information and a wide variety of decisions that researchers
must consider related to the likelihood of detecting significant lower
level or cross-level direct effects. However, as our review has high-
lighted, researchers are advancing hypotheses and testing cross-level
interactions (i.e., testing varying slope models) at a rapidly growing
rate. Whereas there are formulae and tools available for multilevel
designs with fixed direct effects, Scherbaum and Ferreter (2009)
concluded that “estimates of statistical power of cross-level interac-
tions are much more complex than the computations for simple main
effects or variance components . . . and there is little guidance that can
be provided in terms of simple formulas” (p. 363). Indeed, Snijders
and Bosker (1993) noted the following: “In the more general case,
with within-group regressions which may be heterogeneous, it is
impossible to derive analytical expressions for optimal sample sizes”
(p. 249). Over a decade later, Snijders (2005) echoed the sentiment
that “for the more general cases, where there are several correlated
explanatory variables, some of them having random slopes, such clear
formulae are not available” (p. 1572). The intractability of these tests
stem from the fact that they simultaneously hinge on factors associ-
ated with the estimation of the lower level slopes and the higher level
moderation of them. Notably, Zhang and Willson (2006) used simu-
lation data to investigate the power difference among three multilevel
analytic techniques: (a) hierarchical linear modeling (HLM); (b) de-
viation structural equation models; and (c) a hybrid approach of HLM
and structural equation models. Although their study yielded some
important insights concerning different multilevel analytic techniques,
it did not offer a usable general approach for estimating the power of
cross-level interactions. Zhang and Willson also considered fewer
parameters and values per parameter than we do here—for example,
they did not consider the role of measurement error.

Accordingly, we next present the results from a simulation
study in which we manipulated research design and measure-
ment factors that previous research has suggested could influ-
ence the power to detect cross-level interactions. In the simu-
lation study we examined the statistical power of cross-level
interaction tests and explored the relative impact of various
factors on statistical power.

Simulation Study

Data Generation Procedure

We conducted a Monte Carlo simulation to understand how re-
search design and measurement features affect the statistical power to
detect cross-level interactions in multilevel models. For the simulation
study, we employed the conventional alpha level of .05 for consis-
tency and comparability purposes. Naturally, one’s preselected alpha
level is directly related to the power of any statistical test, so, as we
describe later, a power calculator that we created and make available
for use allows researchers to specify any desired alpha level.

Let Y;; and X, be true scores for the Level 1 criterion and predictor,
respectively, for the ith person in the jth Level 2 unit. Also, let W, be
a Level 2 predictor assessed without measurement error. The power to
detect the cross-level interaction in Equation 5 was estimated by
simulating X, ¥;;, and W; as random variables from normal distribu-
tions. Additionally, X;, ~ N(j;, (rfL + o%) where 0% is the within-unit
variance of X i which was standardized within each unit, that is,

o’ = PxOX
1 —py

B = pXO-§( (1 - pX)7]~
The variability across Level 2 units ((rﬁ) was allowed to vary based
upon the ICC for X, p,. Specifically,

u

g

2
n —
Px = s =oy(o, o)

g, + oy

2
[

The dependent variable, Y, was generated using the following
equation:

Yij:B[)j+B]j(ij_;(j)+rzj\/l _B%j (6)

where 3, and 3,; are a random intercept and slope, respectively, and
the within-unit error term r;; ~ N(0,1). Moreover, 3,; represents the
correlation between X;; and Y;; within each Level 2 unit j. The random
coefficients were generated with the following equations:

} XW.
[30/ = O'j('Yoxo_*l + ’YoWWj + 'Yomﬁ + uo;) @)
[

w

Bljz%o""YleBle"‘ Wy ®)

W, was standardized with a mean of zero and unit variance, and the
Level 2 error terms, u,; and u, ;, were generated with u,; ~ N(0,7¢,)
and u;; ~ N(O,7;,). Also, note that X; and W, were simulated as
uncorrelated random variables.

The between-group variance for Y (crjz) was manipulated by
changing the ICC value, p,. Thatis, p, = o7/(o; + o). In this
study, E(X;;) = 0, because E(p;) = 0, and the random effects were

2 Other factors play prominent roles in multilevel power estimates, includ-
ing the specific estimation method that is employed, such as restricted maxi-
mum likelihood (RML) versus full maximum likelihood estimation (FML)
versus Bayesian approaches (see Raudenbush & Bryk, 2002; Scherbaum &
Ferreter, 2009), and the presence of covariates (i.e., Level 1 or 2; see Rauden-
bush, 1997). For our purposes, we adopt RML as implemented in the popular
hierarchical linear modeling software (HLM; see Raudenbush & Bryk, 2002;
Raudenbush et al., 2004) and exclude covariates.
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assumed to be independent (i.e., 7,, = 0),> so crjz =o’p,/(1 — p,)
for the average X (Clarke & Wheaton, 2007; Maas &_Hok,
2004) and T, is the variance of B, that is independent of X, W,,
and X;W,. Specifically, 7oy = oX(1—vyz — Vi —Yox,)- In Equa-
tion 7, Yox» Yows and Yoz, capture the standardized relationships
between )_(_i, W,, and )_(_,-Wj with B; Additionally, v, is the stan-
dardized relationship between W, and ,; and vy, is the overall
average correlation between X;; and Y,; across Level 2 units. In
Equation 8, the standard deviation of slopes is 7, and the unique

variance in slopes (i.e., B,;), after controlling for W,, is 7, =
Gél(l—'y%w). It is important to emphasize that variability in
intercepts and slopes was introduced by manipulating (r]2
and (rél, whereas Ty, and 7, represent the conditional vari-
ance of By and B; after controlling for Level 2 predictors.

In our simulation we also examined the effect of measurement error on
the power of the cross-level interaction test. In particular, measurement
error was introduced into the true scores of Xi» Yy, and W, to create fallible
measures (x;, y;, and w;) using the following equations:

xij = \R Xij + Y 1 T P exij (9)
— n_
Vi = \/a Y+ V1= pyey (10)
Wj: \]ZVVJ_F \,“1  Pww ewj (11)
where e, e, and e, ; are standard normal error terms and p,, p,,,

and p,,,, are reliability coefficients of x,;, y;, and w;, respectively.

Simulation Design

Table 2 summarizes the manipulated parameters and the values
that we used in the simulation study. We selected parameter values
to be representative of the extant literature as well as to be those
encountered by most applied psychology and management re-
searchers. For example, on the basis of our review of 79 multilevel
investigations published in the Journal of Applied Psychology
between 2000 and 2010, the average Level 1 unit sample sizes

Table 2
Parameters and Parameter Values Used in Monte Carlo
Simulation

Symbol Parameter Values

n; Average L1 N 3,5,7, 18
n; L2 N 20, 40, 60, 115
Py L1 X ICC .15, .30
Py L1 YICC .15, .30
Prx L1 X reliability 8,910
Pyy L1 Y reliability 8,910
Prw L2 W reliability 8,.9, 1.0
Y10 Average L1 direct effect 0,.2, .4

[t SD of L1 slopes .10, .17, .22
Vi Cross-level interaction 0, .15, .3, 45, .75
Yox Direct effect of X; 0,.1,.2
Yoxw Direct effect of X;W, 0,.1,.2
Yow Cross-level direct effect of W, 0, .15, .3, .45
Total cells 2,799,360
No. replications 1,000
Total no. score sets 2,799,360,000

Note. L1 = Level 1; L2 = Level 2; ICC = intraclass correlation coef-
ficient; SD = standard deviation.

ranged from 2 to 291, with a median of 5, whereas the Level 2
sample sizes ranged from 12 to 708, with a median of 51. A few
recent atypically large studies (e.g., Atwater, Wang, Smither, &
Fleenor, 2009; Dierdorff, Rubin, & Morgeson, 2009) markedly
skewed these distributions, as their 85th percentiles for Level 1
sample sizes was about 18, whereas the 85th percentile of the
Level 2 sample sizes was about 51. The studies that we feature in
Table 1 are representative of the ones published in the Journal of
Applied Psychology over this period, although Mathieu et al.
(2007) had both relatively small Level 1 samples sizes and a
relatively large Level 2 sample. Accordingly, in our simulation we
set the average Level 1 N (n;) to represent the primary range of
studies (i.e., 3, 5, and 7) and we included a condition with 18 to
capture the upper portion of the distribution. We varied the Level
2 N (n;) across 20, 40, and 60 and also included 115 to capture the
corresponding portion of its distribution.

We set variable ICCs (p, and p,) to range from .15 to .30, which
correspond to fairly moderate and large values (Maas & Hox,
2005; Scherbaum & Ferreter, 2009) and capture the range (i.e., .00
to .39) observed in Table 1. We set variable reliabilities (p,,, p,,,
and p,,,,) at .8, .9, and 1.0, which are also representative of the
values reported in Table 1. The remaining parameter values are
among the most difficult to establish because they are not reported
consistently (if at all) in the literature. Indeed, the primary guid-
ance noted in previous literature stems from recommendations
offered by Raudenbush and Liu (2000) who, in turn, simply
applied Cohen’s (1988) rules of thumb for small, medium, and
large effect sizes. Therefore, we obtained raw data and calculated
these directly for each of the studies reported in Table 1.* From a
Level 1 model that included only the lower level predictor, the
average slopes (y,,) ranged from —.06 to .45 with a mean of .17
across the seven analyses. Accordingly, we varied the magnitude
of the average lower level slopes from 0 to .2 to .4.

Given the small sample sizes and the fact that Level 1 sample
size distributions were markedly skewed, we conducted meta-
analyses to estimate the variability (i.e., SD) of slopes ]’TTI In

particular, we applied Hunter and Schmidt’s (2004) “bare-bones”
meta-analysis, which corrects only for varying study (in this case,
Level 1) sample sizes. As illustrated in Table 1, the meta-analysis-
based SD of slopes ranged from .00 in one of the Mathieu et al.
(2007) analyses to .27 in Hofmann et al. (2003), averaging .15.
Based on these findings and those of the individual study meta-
analyses, we set the SDs of Level 1 slopes at .10, .17, and .22.
Finally, we set the magnitudes of the cross-level direct effect (vy,,,)
to 0, .15, .30, and .45 and the cross-level interactions (y,,,) to O,
.15, .30, .45, and .75, which are consistent with the ranges reported
in Table 1 and recommendations from the previous work cited
above. In total, our simulation design resulted in 2,799,360 unique
conditions (i.e., combinations of parameter values). Because we
replicated each set of parameter values 1,000 times, our simulation
generated and used almost 2.8 billion sets of scores.

*In support of this assumption, analyses of the data from studies
included in Table 1 revealed that 7,, absolute values ranged from .0002 to
.06, averaging .02.

4 We thank the study authors for graciously supplying us with their raw
data. More detailed information regarding these additional analyses and
results are not reported in this paper but are available from the first author.



CROSS-LEVEL INTERACTION EFFECTS 957

Simulation Accuracy Checks

Prior to conducting the substantive analysis, we performed a
detailed investigation to verify the accuracy of the simulation
procedures. We examined the Type I error rate of cross-level
interactions and bias of parameter estimates in cases where arti-
facts such as measurement error were absent from the data gener-
ation procedure. For the simulation, we obtained 1,000 replications
for each parameter value combination in the absence of a cross-
level interaction (i.e., v;, = 0). We conducted key accuracy
checks for Type I error rates using the 559,872 cells from our
design that included a true null cross-level interaction effect.

The average empirical Type I error was .045, and the median
absolute value of the difference between the empirical Type I error
rates and the expected (i.e., prespecified Type I error) rate of .05
across all Type I error rate conditions was .007. As a further check we
found that 95% of these values fell between .000 and .022. The
similarity of the empirical Type I error rates compared to the a priori
set Type I error rate is evidence to support the accuracy of the
data-generation procedures. In short, the results confirmed the ability
of the generation procedure to provide data suitable for substantive
analyses.

As a second and complementary set of accuracy checks, we
investigated the extent to which the simulation generated cross-
level interaction effects that were unbiased in conditions without
statistical artifacts. It is important to conduct these analyses re-
garding the potential presence of bias for the conditions in the
simulation for which methodological and statistical artifacts are
absent, given their known biasing effects on the observed effect
sizes. In this second set of key accuracy checks, we isolated the
2,239,488 cells from our simulation for which there was a
true population cross-level interaction effect (i.e., y,,, > 0). The
absolute-value differences between the empirical (i.e., Monte
Carlo generated) and the population values (i.e., prespecified pa-
rameter values) were negligible, with a median absolute of .007.
Moreover, 95% of the absolute-valued differences fell between
.000 and .032 for v,,. Thus, the simulation successfully modeled
the cross-level relationships as anticipated. Given the evidence in
support of the validity of our simulation, we next describe the
simulation’s substantive results.

Results

Our goal in the simulation study was to examine factors that
affect power in cases where the cross-level interaction (i.e., y,,,) is
greater than zero. The average statistical power across the condi-
tions in the simulation for detecting a cross-level interaction was
only .192. We investigated the relative importance of the various
factors we manipulated by conducting an ANOVA with statistical
power as the dependent variable. The different levels of the factors
accounted for 96.1% of the variation in statistical power and are
summarized in Table 3. The partial eta-squared percentage (P-
M%%) values in Table 3 suggest that the following four main
effects, in order of importance, were the primary factors in deter-
mining the statistical power of cross-level interaction tests: (a) size
of the cross-level interaction (vy,,, P-n*% = 33.08, p < .001); (b)
average Level 1 sample size (n, P-n*% = 18.18, p < .001); (c)
Level 2 sample size (n; P-1?% = 11.46, p < .001); and (d) the
standard deviation of slopes \]’TTI (P-1*% = 9.31, p < .001). With

Table 3

Results of Analysis of Variance of the Effects of Manipulated
Parameters on the Statistical Power to Detect a Cross-Level
Interaction Effect

Effect Effect description P-0*%
Main effects
n; Average L1 N 18.1754
n; L2 N 11.4557
Yiw Cross-level interaction 33.0788
Yio Average L1 direct effect 0.0513
e SD of L1 slopes 9.3129
Py L1 X ICC .00002
Py L1 YICC .00008
0 L1 X reliability 0.2259
Pyy L1 Y reliability 0.2434
Proww L2 W reliability 0.2258
You Cross-level direct effect, W .00000
Yox Direct effect of )_(,» .00000
Yoxw Direct effect of X;W, .00001
Interaction effects

n; * n 9.4071
n* Y, 7.1435
n; * T 1.0217
n 4, 72169
n; * T 1.8559
’Y.lw* /T 5.1652

Note. The model accounted for 96.1% of the variance in statistical power
values. All effects are statistically significant at p < .001 except for v,
Yox» and Yox, (p < .05). P-n?% = partial eta-squared percentage; L1 =
Level 1; L2 = Level 2; ICC = intraclass correlation coefficient; SD =
standard deviation.

three exceptions, the remaining direct effects were all statistically
significant (p < .001) but had negligible effects. The ICC effects
for X;;and Y;; (i.e., p, and p,) and reliabilities of x;; y,, and w; were
statistically significant but explained small percentages in the
variance of statistical power values (<1%). The insignificant ef-
fect of p, and p, is theoretically grounded. For instance, an
anonymoﬁs reviewer noted that group-mean centering X;; removes
Level 2 variance and the relationship between X;; and Y, reflects an
association between within group variances. Consequently, group-
mean centering removes Level 2 variance, and p, and p, do not
affect the power of detecting the cross-level interaction. The three
statistically nonsignificant direct effects were (a) Level 2 moder-
ator direct effect, W (vy,,,); (b) average Level 1 predictor reintro-
duced at Level 2 (7ygx); and (c) average Level 1 predictor by Level
2 interaction, computed at Level 2 (yox,)-

Beyond the main effects, there was also evidence that six
two-way interactions affected the power to detect cross-level in-
teractions, although the relative influences of these effects were
smaller than the aforementioned main effects. The significant
interaction between the Level 2 sample size and the magnitude of
the cross-level interaction (1, * v,,, P-n*% = 7.14, p < .001) is
presented in Figure 1. As shown in this figure, power remains
under 50% for all combinations until one approaches the highest
Level 2 sample size (i.e., 115) with relatively large cross-level
interactions (i.e., vy,,, = .75). The average Level 1 sample size also
interacted with the magnitude of the cross-level interaction (n; *
Yi.. P-n? = .071, p < .001), as shown in Figure 2. Here again,
power remains < 50% until Level 1 average sample size gets to be
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Figure 1. Statistical power to detect cross-level interactions as a function
of Level 2 sample sizes and the magnitude of the cross-level interaction
effect (y,,,).

around 10, and even then it must be paired with relatively large
cross-level interactions (i.e., y,,, = .75). With Level 1 samples
sizes around 18, the large cross-level interactions reach 90%
power, whereas moderate sized cross-level interactions (i.e., y,,, =
.45) had power around 60%.

The standard deviation of slopes interacted significantly with
the magnitude of the cross-level interaction ( /]TTI * v, P-n?% =
.052, p <.001), Level 2 sample size ( ]TTI *n; P-1?% = .019,p <
.001), and average Level 1 sample size ( /TTI *n, P-n*% = .010,
p < .001), as depicted in Figures 3, 4, and 5, respectively. Figure 3
shows that power remains less than 50% for the range of slope and
cross-level interaction magnitude values that we examined.
Extrapolating from the findings in Figure 3, statistical power
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Figure 2. Statistical power to detect cross-level interactions as a function
of average Level 1 sample sizes and the magnitude of the cross-level
interaction effect (y,,).
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Figure 3. Statistical power to detect cross-level interactions as a function
of the standard deviation of slopes and the magnitude of the cross-level
interaction effect (y,,,).

would not reach 80% for even a relatively large cross-level inter-
action effect (i.e., 'y;,, = .75) until the SD of slopes exceeded .3,
which is beyond typically observed values. Similarly, power re-
mains less than 50% for the combinations of SD of slopes and
Level 2 samples size values that we examined. Extrapolating the
findings in Figure 4 indicates that power would reach 80% for
relatively large Level 2 samples (i.e., 115) and SD of slope of
approximately .5. The power associated with combinations of the
SD of slopes and the average Level 1 sample sizes (see Figure 5)
showed a similar pattern as that for Level 2 sample size but
accelerated at a faster pace. In other words, for relatively large
average Level 1 sample sizes (i.e., 18), power exceeded 50% for
SD of slopes at .17, although it would not reach 80% unless the SD
of slopes exceeded .3. Note that we performed these extrapolations
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Figure 4. Statistical power to detect cross-level interactions as a
function of the standard deviation of slopes and Level 2 sample size

(n)).
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Figure 5. Statistical power to detect cross-level interactions as a function of
the standard deviation of slopes and the average of Level 1 sample sizes (n,).

using predictions from polynomial regressions derived from the
curves depicted in Figures 3-5, and they result in values that are
not likely to occur in practice.

Finally, the two samples sizes interacted significantly (n; * n;
P-*% = .009, p < .001), as illustrated in Figure 6. As shown,
statistical power remains very low (i.e., < 40%) for the smaller
average Level 1 samples sizes (i.e., = 7) even if paired with a
relatively large Level 2 sample size of 115. However, relatively
large average Level 1 samples sizes (i.e., = 18) afford power >
60% with Level 2 samples as small as 25 and surpass power of
80% with Level 2 samples of 35. Also, using these findings we
investigated power values associated with the popular 30-30 rule
(Kreft & de Leeuw, 1998), given its predominance in the literature.
Holding both Level 1 and Level 2 samples sizes at 30 and aver-
aging across other parameter values in our entire simulation, the
30-30 rule yields statistical power values ranging from 6.5% for
relatively small cross-level interactions (i.e., v,,, = .15) to 79.5%
for relatively large cross-level interactions (i.e., y,,, = .75), aver-
aging 32.4% across all other parameter values.

In sum, the results of the simulation study illustrate how impor-
tant research design and measurement features relate to the power
to detect cross-level interactions. Moreover, results indicate that
the power to detect cross-level interactions depends, in large part,
on the magnitude of the cross-level interactions and the SD of
slopes, both in and of themselves but also in combination. The
Level 2 and average Level 1 sample sizes also play prominent
roles in determining the ability to detect cross-level interactions,
both directly and in combinations with other factors. Importantly,
our simulation results also demonstrate the fallacy of relying on
simplistic rules of thumb, such as the 30-30 rule.

Discussion

Accurate interpretations about the presence of cross-level inter-
actions lie at the heart of multilevel investigations in applied
psychology. Our goal was to assess the factors that affect statistical
power to detect cross-level interaction effects and to address

Snijders’ (2005) observation that there is not clear formula for
some general cases of complex multilevel models. Accordingly,
we sought to provide researchers with a means to a priori estimate
the power of their cross-level interaction tests. Our simulation
study led us to conclude that our power approximation procedure
provides an accurate method to calculate the power of tests of
cross-level interactions. Substantively, key insights include the
fact that the power associated with such tests is affected primarily
by the magnitude of the direct cross-level effect (v,,) and the
standard deviation of the Level 1 slope coefficients ( ]TTI ), as well

as by both average lower level (n;) and the upper level (1;) sample
sizes. Moreover, the same four factors worked in combination to
drive power estimates, suggesting that there can be compensatory
factors affecting the power to detect cross-level interactions.

The lion’s share of the variance in power values clearly was
accounted for by the magnitude of the cross-level interaction
effect, both as a main effect and in combination with the Level 2
and average Level 1 sample sizes. This is consistent with research
regarding statistical power in other data-analytic contexts, in that
the magnitude of the effect being investigated plays a prominent
role, with larger effects affording greater power. In the cross-level
context, however, the variability (i.e., SD) of the Level 1 slopes
also plays a significant role, both as a main effect and in combi-
nation with samples sizes and the magnitude of the cross-level
effect. In short, testing for relatively large cross-level interactions
in instances where there is abundant variability of Level 1 slopes
provides the greatest opportunity to unearth significant effects.

Naturally, the Level 2 and average Level 1 sample sizes are
focal points for cross-level studies. These represent the sampling
frames for investigators and drive decisions as to how to best
allocate resources. They are also the factors that are more likely to
be under researchers’ control. However, contrary to conventional
wisdom, our findings suggest that the average Level 1 sample size
has a relative premium of about 3:2 as compared to the Level 2
sample size (cf. Snijders, 2005). Notably, both levels’ samples
sizes interacted significantly with the magnitude of the cross-level
interaction and with the variability of the Level 1 slopes, with the

P .
L@
=
o ---- =5
i n;=17
0.8 ______ o
§0.6— ‘
4 L
=
2
2
E 0.4

I T
20 40 60 115
Level 2 Sample Size

Figure 6. Statistical power to detect cross-level interactions as a function
of Level 2 sample sizes and the average of Level 1 sample sizes (n,).
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corresponding effect sizes being comparable in all instances. Im-
portantly, we scaled the two sample size distributions to be com-
parable and representative of cross-level studies published in the
Journal of Applied Psychology from 2000 to 2010 (Cooper &
Richardson, 1986). These findings suggest that researchers inter-
ested in testing cross-level interactions should attempt to sample
more thoroughly within units to enhance their power, as compared
to sampling a more units. Yet, many times in applied psychology
there may be a natural limit to the sizes of certain groups (e.g.,
work teams, classrooms, nuclear families), which may preclude
large numbers. Fortunately, our results suggest that in such in-
stances some additional power may be garnered by sampling more
Level 2 units. Ultimately, the decision as to focus on maximizing
Level 1 versus Level 2 sample sizes may come down to what other
parameters are of interest in an investigation. In other words, if
besides the cross-level interaction a researcher is interested in
testing a lower level direct effect, then perhaps Level 1 sample
sizes are most important. Alternatively, if the researcher is also
interested in testing cross-level direct effects, that may suggest
emphasizing the number of units that are sampled.

Multilevel (ML) Power Tool

We developed a Monte Carlo program (see Appendix), execut-
able in R (R Development Core Team, 2011), for researchers to a
priori estimate the power of their cross-level interaction tests. R is
a language and environment for statistical computing and graphics
that can be run locally on a personal computer or via Web inter-
faces (see, e.g., Culpepper & Aguinis, 2011, for a review of R). In
order to a priori calculate the power of a cross-level interaction
test, one needs to estimate values for the various parameters
included in Equation 5 and listed in Table 2. An ideal situation
would be to conduct a pilot study with a representative sample
from one’s target population and estimate values directly from
those data. For purposes of consistency in these power calcula-
tions, we advocate standardizing (i.e., Z scoring) all lower level
variables on the basis of the total sample to provide a common
metric (for similar recommendations, see Hox, 2010, p. 243;
Raudenbush & Liu, 2000, p. 202). These scores can then be used
to derive the within-group centering and average Level 1 predictor
scores for reintroduction at Level 2, as outlined earlier (see Enders
& Tofighi, 2007; Hofmann & Gavin, 1998). We also suggest
standardizing all Level 2 effects at that level. Although researchers
often do not have the time or resources to conduct elaborate pilot
studies, in instances where the primary study will represent an
expensive endeavor or when it is vital to have high confidence that
one is avoiding Type II errors, they may well be justified.

If a pilot study cannot be conducted, several parameter values
may be available from previous investigations. For example, pre-
vious work and perhaps even meta-analyses may provide insights
regarding the magnitude of lower level and cross-level direct
effects. Our experience has been that although researchers some-
times report ICCs for their criteria, they rarely do so for their Level
1 predictors. In lieu of such information, researchers might con-
sider adopting values ranging from very small (e.g., .02) to fairly
high (e.g., .75) for the ICC of lower level predictors, as we did
earlier in our simulation.

Values for the variability of slopes and the magnitude of the
cross-level interaction are not likely to be available from previous

research and are among the most difficult to estimate. Generally
speaking, the variability of slopes and the magnitude of cross-level
interactions are likely to be higher in instances when disordinal
(i.e., crossover) interactions are anticipated, as compared to when
ordinal (i.e., noncrossing) interactions are expected. In the absence
of information, however, we recommend considering a wide range
of values. Note that the magnitudes of these parameters are influ-
enced by standardization and centering techniques that are em-
ployed, as well as by substantive factors. For example, some have
advocated conventionally small (.20), moderate (.30), and large
(.40) average effect sizes (e.g., Raudenbush & Liu, 2000; Snijders
& Bosker, 1993, 1999), whereas the range of values observed in
the studies we chronicled in Table 1 was from .00 to .27. We
observed markedly variable and skewed distributions of Level 1
slopes in the studies we reviewed in Table 1, but bare bones
meta-analysis revealed values of .10, .17, .and 22 as representing
relatively little, moderate, and high variability, respectively. Little
is known about the true distributions of slopes, and we strongly
advocate that researchers leverage prior work in their substantive
area and/or conduct a pilot study to choose reasonable values for
their applications. In many instances, values (or ranges) for various
parameters should be chosen for their substantive importance. For
example, effect sizes of certain magnitudes may be associated with
strategic imperatives or goals, break-even analyses, valued impact
of some social initiative, or points where an effort becomes cost
prohibitive.

To demonstrate the application of ML Power Tool, as well as to
illustrate the statistical power of previously published tests of
cross-level interactions, we calculated the parameter values di-
rectly from the raw data for the studies listed in Table 1. We
inserted those values in the syntax that appears in the Appendix
and then entered and executed the program code in R. We empha-
size that these calculations are for illustrative purposes and that
proper power estimation should be done in an a priori, not post
hoc, fashion. That said,

Post hoc power analysis is not only useful in evaluating one’s own
analysis, as just shown, but also in the planning stages of a new study.
By investigating the power of earlier studies, we find what effect sizes
and intraclass correlations we may expect, which should help us to
design our own study. (Hox, 2010, p. 240)

As shown in the rightmost column of Table 1, the power to detect
cross-level interactions across three levels of alpha (i.e., .10, .05,
and .01) was quite low in previous research. At the a = .05 level,
the estimates ranged from .19 in Liao and Rupp (2005) to .80 in
Hofmann et al. (2003), with an average of .40. At the o = .01
level, the range was .06 to .59 (M = .22), whereas at the o = .10
level the estimates ranged from .29 to .88 (M = .51). In short, the
power to detect significant cross-level interactions, even under
fairly advantageous conditions, is quite low and substantially be-
low the conventional .80 level. Of course, finding statistically
significant effects in spite of low power can also be indicative of
the strength of the true population effects considered in these
previously published studies.

Notably, several of these authors commented on the power of
their cross-level tests. For example, Liao and Rupp (2005) men-
tioned that “our relatively small number of groups constrained our
statistical power to detect the hypothesized [cross-level] relation-
ships” (p. 253). However, they had no way of knowing just how
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limited the power to detect significant interactions was in their
study. Elsewhere, focusing on their Level 2 sample size (N = 212)
and the fact that their cross-level interaction hypotheses were
supported, Mathieu et al. (2007) mistakenly asserted that they had
“sufficient power to test our hypotheses adequately” (p. 536). We
now know that Mathieu et al. had less than a one in three chance
at finding significant (p < .05) cross-level interactions in their
data. Having a method by which one can determine the power to
detect significant cross-level interactions clearly will sharpen
one’s ability to draw more accurate conclusions from multilevel
investigations.

Implications

Application of our power calculator to previous research sug-
gests that, generally speaking, the power to detect significant
cross-level interactions is quite modest. One of the primary impli-
cations of this work is that researchers should exercise caution
when interpreting statistically nonsignificant cross-level interac-
tion tests. Although the limited power of single-level tests of
interactions has been lamented for quite some time, it appears that
the power to detect cross-level interactions is just as low, if not
even lower. Naturally, a second direct implication of this work is
that researchers should calculate their anticipated power a priori
and employ the largest samples possible. Whereas using reliable
measures certainly enhances power, beyond a certain point (e.g.,
.70) the impact of improved reliability was negligible as compared
to that afforded by larger samples, at both lower and upper levels.
We hasten to add that we are not suggesting that measurement
reliability has no implications for statistical power—indeed, it is
very relevant. Although the reliability of measures had relatively
little impact on power in our simulation, that was largely attribut-
able to the fact that we used distributions of reliabilities from
articles published in the Journal of Applied Psychology. Of course,
given that it is a premier outlet for applied psychological research,
studies with poor measurement stand little chance of appearing in
the journal. In effect this amounts to reliability distributions that
may be restricted as compared to the population of cross-level
investigations. That is not, however, likely to be the case for the
other parameters on our simulation.’

By way of example, assume that the reliabilities of the lower
level predictor and upper level moderator are both .60 and their
latent correlation is r,,, = .30. Applying Bohrnstedt and Marwell’s
(1978) formula (designed to estimate single-level product reliabili-
ties) to these values as a rough approximation would suggest that
the product term reliability would be about .41! If the predictor and
moderator reliabilities were .90, then the reliability of the product
term would be closer to .83. The implication of this difference in
reliabilities is that the observed cross-level effect sizes are roughly
90% of the magnitude of true (corrected for attenuation) effect
sizes with reliabilities around .90, whereas the observed cross-
level effects sizes will be only about 65% of the true effect sizes
if estimated with measures having reliabilities around .60. We
derived those values using traditional corrections for attenuation,
and they hold throughout the range of effect sizes. We wish to
emphasize that these estimates are exceedingly rough guesses, as
the proper measurement model for cross-level interactions has yet
to be specified. With that caveat, we surmise that researchers using
measures with poor versus high reliabilities (say .60 vs. .90) may

be reducing the power to detect significant cross-level interactions
by around 25%. In sum, although measurement reliability played a
limited role in our simulation, it is very important for the power
associated with testing cross-level interactions. This clearly repre-
sents an important direction for future research and development.
But equally clear is that measurement reliability is at a premium
for researchers interested in testing cross-level interactions.

When it comes to the power of cross-level interaction tests, our
findings suggest that there is about a 3:2 premium on the average
size of the lower level samples, as compared to the upper level
sample size. In other words, researchers wanting to conduct accu-
rate tests of cross-level interactions should place relatively more
emphasis on sampling larger units, as compared to sampling a
larger number of units. These empirically based conclusions differ
from those offered by Snijders and Bosker (1993) and others
summarized in Scherbaum and Ferreter (2009), who placed more
emphasis on sampling upper level units. Whereas more research is
certainly warranted on the topic, our simulation was fairly com-
prehensive, manipulated 13 different parameters with values de-
rived from the extant literature, and included a large number of
replications.

Our results also highlight the importance of sampling frames for
multilevel investigations. Gaining access to a sufficiently large
number of units, whether they are teams, departments, or organi-
zations, is an expensive and time-consuming task. Quite often
researchers gain access through a single organization that has
branches, stores (e.g., Chen et al., 2007), sales regions (e.g.,
Mathieu et al., 2007), or teams (e.g., Mathieu & Taylor, 2007) that
perform comparable work under similar circumstances. Elsewhere,
researchers who employ large-scale secondary sources often limit
their investigations to, for example, organizations that fall within
certain standard industrial classification (SIC) codes. These types
of sampling strategies certainly facilitate collecting data for a
multilevel study while holding a slew of potential contaminating
influences constant, but they also limit the degree to which lower
and upper level relationships are likely to vary within and across
levels.

Take, for example, an investigation in which one believes that
an upper level variable (e.g., team cohesion) moderates a lower
level relationship (e.g., individuals’ job satisfaction—withdrawal
behaviors relations). Let us further assume that organizations have
fairly strong cultures and that attraction—selection—attrition pro-
cesses (Schneider, Goldstein, & Smith, 1995) operate to create
fairly comparable teams, each with fairly homogeneous members.
To the extent that teams are sampled from a relatively smaller, as
compared to greater, number of organizations (i.e., in effect, a
third-level variable), the variability of the job satisfaction—
withdrawal slopes is likely to be diminished, as will be the mag-
nitude of the cross-level interaction effect. Both factors would

5 To further explore the influence of reliability in this context, we ran a
second simulation and expanded the range of all three reliabilities from
0.8-1.0 to .6-1.0 while limiting the ranges for the other parameters to their
most representative values. In other words, we substantially favored the
odds of reliabilities playing a larger role in the overall power estimates.
Whereas the combined linear effects of measurement reliability were <1%
in our original study, they were still < 5% in this second simulation, even
when biasing it to favor their influence. Details regarding this supplemental
simulation are available from the authors.
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serve to seriously limit the power to detect a significant cross-level
interaction. In short, there is a premium not only on sampling a
larger number of teams in this case but also on sampling a greater
diversity of teams from a greater number of organizations or
settings so as to not constrain variance across levels. Notably, this
suggestion harkens to similar concerns with “extreme-groups de-
signs” whereby researchers intentionally sample entities from the
ends of a predictor distribution to maximize variance in a sample.
So doing raises questions about the representativeness of the
resulting effect sizes because they are subject to range enhance-
ment (see Aguinis, 2004; Cortina & DeShon, 1998). However, our
recommendation to sample a greater diversity of settings is not
intended to artificially enhance the range of predictor values but
rather to better represent the target population of entities. In other
words, researchers are typically interested in making generaliza-
tions to groups, units, organizations, or other collectives as a
whole, rather than to those that reside in a single organization or
industry sampled in a typical study. In sum, the larger issue is that
researchers working with multilevel designs should pay serious
attention to sampling issues associated with both lower and higher
level entities, as typical sampling frames been been restricted and
limit the power of investigations to find significant cross-level
interactions.

Our results clearly highlight that the power to detect cross-level
interactions is severely limited in many circumstances. One re-
sponse to this situation could be to “open the alpha window” and
adopt more lenient levels such as o = .10 or .15 for such tests (see
Cascio & Zedeck, 1983). But we do not want to promote the
adoption of new universal alpha levels that may become new
standards no less arbitrary than the typical p < .05. Instead, we
advocate that researchers advance reasoned arguments for the a
priori alpha levels that they adopt in any investigation (see Agui-
nis, 2004). Such arguments should weigh the relative costs and
benefits of Type I versus Type II errors and the maturity of the
subject domain. For example, it may be reasonable to adopt more
liberal alpha levels for early investigations in a nascent topic area.
As the research base matures and relationships become better
understood, then perhaps more stringent alpha levels should be
adopted. In other instances, for example, in safety and health
domains, the costs and consequences of one type of error may be
dire as compared to the alternative. In those instances, grounded
researchers might adopt even more extreme alpha levels (e.g., o =
.01 or .20) to balance such concerns. In short, power is a serious
concern when it comes to testing cross-level interactions. But
rather than simply advocating a relaxed standard for such tests, we
recommend that researchers conduct a priori power analyses and
then adopt a well-reasoned alpha level for their context and do-
main.

In sum, our research leads to the following specific guidelines in
terms of designing future multilevel studies. First, researchers
should use measures with high reliability and construct validity.
Second, they should not rely on simple conventions such as the
30-30 rule because there are complex and interactive relationships
among the factors that affect power. Third, researchers should
consider the relative impact of the various factors that affect power
as revealed by our Monte Carlo simulation. They should conduct
a pilot study to obtain reasonable values for each, whenever
feasible, or otherwise estimate likely parameter values. Fourth,
they should conduct an a priori power analysis using ML Power

Tool to estimate power before data are collected. They can use the
ML Power Tool to understand how power will change based on
various research design and measurement choices, including
choices that have different cost implications in terms of time and
financial resources as well as practical constraints involved in the
data collection effort. Following these guidelines is likely to lead
to improved accuracy concerning the presence or absence of
cross-level interaction effects.

Limitations, Boundary Conditions, and Extensions

All Monte Carlo simulations are bound by the parameters se-
lected to be manipulated and their values included in the design.
Although our simulation was quite large in scope, any such effort
can always include additional parameters and values. Our choices
for parameters were guided by our theory-based expectations re-
garding factors known or hypothesized to affect the power to
detect cross-level interaction effects. Moreover, our choices for
parameter values were guided by ones as reported in the applied
psychology literature. In spite of these considerations, we had to
make some decisions about what to include and what not to
include in our simulation. For example, factors known to affect the
power of continuous moderators are generally similar to those
known to affect the power of categorical moderators in the context
of regression models (Aguinis, 2004). So, we anticipate that our
results regarding the relative impact of factors that affect the power
to detect continuous moderators will generalize to the case of
categorical moderators in the context of multilevel models. Nev-
ertheless, there are additional issues that are raised when the
moderator is categorical, such as a resulting nonnormal distribu-
tion.

As a second example of Monte Carlo design features, our
simulation held Level 1 sizes constant within each design cell and
assumed homogeneity of within-group variances. Again, we do not
anticipate that deviations from this scenario will affect our results
in a substantive manner. Similarly, Maas and Hox (2005) found
little influence of heterogeneous Level 1 sample sizes on power
estimates, beyond what the mean Level 1 value suggested. Nev-
ertheless, now that our simulations have led to knowledge regard-
ing the relative impact of Level 1 and Level 2 sample sizes on the
power to estimate cross-level interaction effects, future research
could examine the extent to which severe heterogeneity of lower
level sample sizes and variances across upper level units affect the
power to detect existing cross-level interactions. Our simulations
also adopted typical hierarchical modeling assumptions, such as
normal variable distributions and uncorrelated errors within and
across levels. Naturally, to the extent that such assumptions do not
hold, they will likely negatively impact the power to detect true
effects, the degree to which remains an issue for future investiga-
tions. Furthermore, our work—and any application of power anal-
yses—assumes that the targeted effect size estimate is accurate. To
the extent that previous investigations have yielded effect size
estimates that may have been biased by threats to internal validity,
endogeneity influences, or other sources of contamination, the
entire exercise is compromised.

We should also highlight that we employed within-group cen-
tering and reintroduced the between-group variance in the Level 1
predictor as a Level 2 predictor. This is a commonly recommended
procedure for testing cross-level interactions (cf. Enders & To-
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fighi, 2007; Hofmann & Gavin, 1998) and permits one to partition
the observed lower level predictor variance (and potential interac-
tions) into that which resides within versus between Level 1 units.
However, the most appropriate centering techniques for any ap-
plication are guided by the researchers’ underlying assumptions
and theory concerning the relationships being tested (Hox, 2010).
These become even more complex in the repeated measures ver-
sions of multilevel designs (Biesanz et al., 2004). Our current
findings are limited to nested multilevel designs using within-
group centering approach, but research is warranted to test its
application to other centering approaches and designs. In a related
vein, we advocate standardizing variables on the basis of the total
sample for lower level variables and at the upper level for Level 2
variables. This practice is widely recommended by others who
have advanced other power estimation approaches (e.g., Rauden-
bush & Liu, 2000), but there are costs and benefits of doing so. On
one hand, Hox (2010) argued,

When we consider power problems in multilevel designs, it is useful
to translate the model under consideration into a standardized model.
In a standardized model, the logic of power analysis, including deci-
sions about effects sizes, does not depend on the arbitrary scales of the
variables. In a standardized framework, it also becomes possible to
establish rules of thumb about what may be considered small, me-
dium, and large effects. (p. 243)

On the other hand, standardizing variables influences the sub-
stantive interpretation of effects in applied research and under-
mines direct comparisons of effects across samples or times. The
larger point is that effect size estimates in multilevel investigations
are dicey entities. In fact, Snijders and Bosker (1999) noted the
traditional “definition of R* now and then leads to unpleasant
surprises: it sometimes happens that adding [significant] explana-
tory variables increases rather than decreases some of the [error]
variance components. Even negative values of R? are possible” (p.
99). In other words, effect sizes in multilevel research are complex
phenomena that are neither totally understood nor directly com-
parable to their single-level analogues. The implications of cen-
tering decisions, standardization, and effect size estimates for
interpreting multilevel research findings all deserve further study.

We should note that, for simplicity sake, we limited our inves-
tigations to models with one lower level predictor and one upper
level predictor/moderator. However, Raudenbush (1997) and oth-
ers have demonstrated that the power to detect significant lower or
cross-level direct effects can be enhanced by including significant
covariates from either level. The logic is that covariates help to
reduce estimates of standard errors, thereby increasing power. We
would surmise that including covariates in one’s analysis would
also enhance the power to detect cross-level interactions. How-
ever, exactly how this operates is likely to be quite complex and to
be a function of the covariances among variables within and across
levels, centering decisions, as well as error distributions and co-
variances across levels. This represents the natural next frontier for
work along these lines. Another design issue that should be con-
sidered would be the role of higher level nesting. Our work has
been limited to a two-level design, such as individuals in teams.
However, if the teams were sampled from multiple organizations,
as recommended above, there would be another level of nesting
and interdependence. Given that a failure to consider salient nest-
ing arrangements leads to underestimates of standard errors, the

power values from our two-level approximation are likely to
overestimate power if there are significant higher level nesting
effects that are not taken into account. The extent to which higher
level nesting compromises the accuracy of two-level power esti-
mates, however, remains a topic for future investigations.

Beyond measurement, research design, and sampling issues, as
well as covariate inclusion, future progress in our knowledge
regarding the power to estimate cross-level interactions accurately
may be garnered through advancements in analytic techniques. For
example, popular hierarchical modeling software packages (e.g.,
HLM; Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2004)
have recently incorporated robust standard error estimates that
adjust for minor violations of normality assumptions. Unfortu-
nately, Maas and Hox (2004) suggested that robust errors should
only be used with relatively large numbers of Level 2 units (i.e., =
100), which limits their use in instances where power needs are
acute. Further, advancements in the domain of multilevel structural
equation modeling (ML-SEM) have been prominent as of late, and
they incorporate the ability to help adjust for measurement unre-
liability (cf., Muthén & Muthén, 2007). We anticipate that devel-
opments in that area will heighten our ability to detect cross-level
interactions in future research, although ML-SEM analyses are
also very sensitive to sample size issues—the very crux of power
analyses.

Our findings also yield suggestions for the reporting of future
multilevel investigations. First, we encourage the reporting of
ICCs not only for lower level outcomes but also for lower level
predictors. Second, many researchers report reliabilities of Level 2
variables that were calculated using lower level data. We encour-
age the reporting of variable reliabilities as aligned with the levels
at which they are used in the substantive analyses (see Chen,
Mathieu, & Bliese, 2004). Third, the variability of lower level
slopes is rarely reported and is critical to the estimation of the
power to detect cross-level interactions. These values are output by
most multilevel software programs or are relatively easy to calcu-
late, and we encourage future researchers to routinely report them.

Conclusion

Although multilevel investigations have been increasing in pop-
ularity at almost an exponential rate, our ability to interpret the
meaning of cross-level interaction tests has been seriously limited
by an inability to derive power estimates. We developed a means
to a priori estimate the power to detect cross-level interactions
based on an extensive simulation. Application of our method to a
sample of previous multilevel studies illustrated that the power to
detect significant cross-level interactions was extremely low. Use
of ML Power Tool will better enable scholars to interpret their
findings more accurately in terms of Type I and II errors and will
also enable them to design more powerful multilevel studies that
will enhance the accuracy of future inferences about cross-level
interaction tests.
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Appendix

Multilevel (ML) Power Tool

12n = 62 #Level-2 sample size

I1n = 7 #Average Level-1 sample size

iccx = .12 #ICC1 for X

¢00 = —0.068364 #Intercept for BOj equation (Level-1 intercept)

201 = 0.345048 #Direct cross-level effect of average Xj on Y

g02 = 0.022851 #Direct cross-level effect of W on Y

g03 = 0.184721 #Between-group interaction effect between W and Xj on Y
10 = 0.451612 #Intercept for B1j equation (Level-1 effect of X on Y)
gl1l = 0.148179 #Cross-level interaction effect

vu0j = 0.00320 #Variance component for intercept

vulj = 0.08954 #SD of Level-1 slopes

vresid = 0.76877 #Variance component for residual, within variance
alpha = .05 #Rejection level

REPS = 1000 #Number of Monte Carlo replications, 1,000 recommended

hlmmmr <-function(iccx,l2n,11n,200,g01,202,203,210,g11, vu0j,vulj,alpha){
require(Ime4)
Wj = rnorm(I2n, 0, sd = 1)
Xbarj = rnorm(I2n, 0, sd = sqrt(iccx)) ## Level-2 effects on x
b0 = g00 + g01*Xbarj + g02*Wj + g03*Xbarj*Wj + rnorm(12n,0,sd = sqrt(vu0j))

bl = g10 + gl1*Wj + rmorm(12n,0,sd = sqrt(vulj))
dat = expand.grid(1lid = 1:11n,12id = 1:12n)
dat$X = rnorm(11n*12n,0,sd = sqrt(1-iccx)) + Xbarj[dat[,2]]
dat$Xbarj = Xbarj[dat[,2]]
dat$Wj = Wj[dat[,2]]

dat$Y <- bO[dat$12id]+ bl[dat$12id]*(dat$X-dat$Xbarj) + rnorm(11n*12n,0,sd = sqrt(vresid))
dat$Xc=(dat$X - Xbarj[dat[,2]])
Imm.fit<- Imer(Y ~ Xc + Xbarj + Wj + Xbarj:Wj + Xc: Wj+(Xc|I2id),data = dat)
fe.g <- fixef(Imm.fit)
fe.se <- sqrt(diag(vcov(Imm.fit)))
ifelse(abs(fe.g[6]/fe.se[6]) > qt(1-alpha/2,12n-4),1,0)
}
simout = replicate(REPS,hlmmmr(iccx,12n,11n,g00,g01,202,203,g10,g11,vu0j,vulj,alpha))
powerEST = mean(simout)
powerEST

Note. Users supply underlined values. This example uses input data from Chen et al. (2007).
Syntax must be run in R (R Development Core Team, 2011) including the linear mixed-effects
models using S4 classes (Ime4) module. This syntax and further information is available at
http://mypage.iu.edu/~haguinis/crosslevel.html
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See page 981 for a correction to this article.



Correction to Mathieu, Aguinis, Culpepper, and Chen (2012)

The article “Understanding and Estimating the Power to Detect Cross-Level Interaction Effects in
Multilevel Modeling,” by John E. Mathieu, Herman Aguinis, Steven A. Culpepper, and Gilad Chen
(Journal of Applied Psychology, Advance online publication. May 14, 2012. doi:10.1037/
a0028380), contained production-related errors in a number of the statistical symbols presented in
Table 1, the Power in Multilevel Designs section, the Simulation Study section, and the Appendix.
All versions of this article have been corrected.
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