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We offer a four-category taxonomy of individual output distributions (i.e., distributions of cumulative results):
(1) pure power law; (2) lognormal; (3) exponential tail (including exponential and power law with an
exponential cutoff); and (4) symmetric or potentially symmetric (including normal, Poisson, and Weibull).
The four categories are uniquely associated with mutually exclusive generative mechanisms: self-organized
criticality, proportionate differentiation, incremental differentiation, and homogenization. We then introduce
distribution pitting, a falsification-based method for comparing distributions to assess how well each one fits
a given data set. In doing so, we also introduce decision rules to determine the likely dominant shape and
generative mechanism among many that may operate concurrently. Next, we implement distribution pitting
using 229 samples of individual output for several occupations (e.g., movie directors, writers, musicians,
athletes, bank tellers, call center employees, grocery checkers, electrical fixture assemblers, and wirers).
Results suggest that for 75% of our samples, exponential tail distributions and their generative mechanism
(i.e., incremental differentiation) likely constitute the dominant distribution shape and explanation of nonnor-
mally distributed individual output. This finding challenges past conclusions indicating the pervasiveness of
other types of distributions and their generative mechanisms. Our results further contribute to theory by
offering premises about the link between past and future individual output. For future research, our taxonomy
and methodology can be used to pit distributions of other variables (e.g., organizational citizenship behaviors).
Finally, we offer practical insights on how to increase overall individual output and produce more top
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performers.
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Recent research has found that individual output generally follows
a nonnormal and heavily right-tailed distribution in various jobs,
occupations, industries, and types of individual output measures
(Aguinis, O’Boyle, Gonzalez-Mulé, & Joo, 2016; O’Boyle & Agui-
nis, 2012). These studies have replicated the nonnormality of individ-
ual output distributions using data consisting of researchers in more
than 50 academic disciplines; actors, actresses, directors, choreogra-
phers, and lighting specialists in the movie and TV industries; fiction
and nonfiction writers; musicians; elected officials in the United
States and other country-level legislative bodies (e.g., Australia, Can-
ada, Ireland, and Estonia); professional and collegiate athletes in

football, baseball, basketball, cricket, swimming, track and field,
skiing, tennis, and other sports; and many other types of workers
including bank tellers, call center employees, grocery checkers, pelt
pullers, electrical fixture assemblers, and wirers.

The nonnormality of individual output distributions is an im-
portant discovery because it affects the foundations of many or-
ganizational science theories and practices, including personnel
selection, training and development, leadership, turnover, team-
work, compensation, motivation, organizational commitment, job
satisfaction, and justice (Aguinis & O’Boyle, 2014). Not surpris-
ingly, evidence that individual output follows nonnormal distribu-
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NOT ALL NONNORMAL DISTRIBUTIONS ARE CREATED EQUAL

tions has stimulated immediate and increasing scholarly attention
(Beck, Beatty, & Sackett, 2014; Call, Nyberg, & Thatcher, 2015;
Vancouver, Li, Weinhardt, Steel, & Purl, 2016). Results from this
research stream have also received media attention from Forbes,
Bloomberg Businessweek, National Public Radio, and many other
outlets. Clearly, the nonnormality of individual output distribu-
tions is of great interest to both researchers and practitioners.

Despite the valuable knowledge produced to date, current meth-
odological procedures lack precision and thus constitute an obsta-
cle to better understanding the nonnormality of individual output
distributions and its implications. For instance, one common meth-
odology has been to use the chi-square statistic to determine
whether the normal distribution or a particular nonnormal distri-
bution offers a better description of individual output distributions
(e.g., Beck et al., 2014; O’Boyle & Aguinis, 2012). Improving on
these approaches that conceptualize normality and nonnormality as
a dichotomy, subsequent research has defined nonnormality as a
continuous construct and adopted pure power law distribution’s
parameter alpha (o) to more precisely assess the shapes of distri-
butions (Aguinis, Martin, Gomez-Mejia, O’Boyle, & Joo, 2017;
Aguinis et al., 2016; Crawford, Aguinis, Lichtenstein, Davidsson,
& McKelvey, 2015). Nonetheless, these recent improvements still
lack precision because they rely on the premise that all nonnormal
distributions fit a pure power law distribution. In fact, Aguinis et
al. (2016) acknowledged this point explicitly: “We use the term
[pure] power law to refer to those heavy-tailed distributions where
output is clearly dominated by a small group of elites and most
individuals in the distribution are far to the left of the mean” (p.
28). Thus, a necessary next step in this line of research is to specify
the meaning of “nonnormality” more precisely.

Understanding the precise nonnormal shape of individual output
distributions is not a mere methodological curiosity. To the contrary,
enhanced precision regarding the presence of a particular distribution
offers information on the mechanism that led to the distribution and,
therefore, is critical for theory development and testing about when,
why, and how a certain distribution exists. In support of this state-
ment, increased precision in the definition and measurement of dis-
tributions has resulted in important theory advancements in physics,
computer science, biology, engineering, and economics (Mitzenm-
acher, 2004; Newman, 2005). For example, research in network
science has shown that the type or amount of harm to which a network
structure is vulnerable is directly related to the precise nonnormal
shape of the underlying distribution regarding each vertex’s number
of links (i.e., an individual’s ties with other individuals; Barabasi &
Bonabeau, 2003; Mossa, Barthélémy, Stanley, & Amaral, 2002). As
another example, research in economics and finance has documented
that the use of incorrect distributions for modeling financial deviations
(e.g., severe economic crises) exposes investments to enormous
amounts of risk, and seemingly similar nonnormal distributions are
poor substitutes for one another (Mandelbrot & Taleb, 2010; Taleb,
2007).

The goal of our study is to examine the extent to which individual
output follows one or more distinct distributions, including multiple
types of nonnormal distributions. Our theoretical approach is to de-
velop a taxonomy containing four categories of distributions, where
each category is uniquely associated with a distinct generative mech-
anism. We then assess empirically which distribution is better at
representing individual output. In terms of methodology, we introduce
and use what we refer to as distribution pitting, which compares
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distributions to assess how well each one fits a given data set. The
epistemological basis of distribution pitting is falsification (Gray &
Cooper, 2010; Lakatos, 1976; Leavitt, Mitchell, & Peterson, 2010;
Popper, 1959)—ideally suited for theoretical domains with too many
untested or undertested theories (Aguinis & Vandenberg, 2014; Ham-
brick, 2007). Although falsification serves as the foundation of dis-
tribution pitting, we acknowledge that the shape of an individual
output distribution may be the result of multiple generative mecha-
nisms rather than a single one. So, when implementing distribution
pitting, we also introduce and use decision rules to determine the
likely dominant shape and generative mechanism per observed indi-
vidual output distribution.

Results suggest that, for 75% of our samples, exponential tail
distributions and their generative mechanism (i.e., incremental
differentiation) likely constitute the dominant distribution shape
and explanation of nonnormally distributed individual output. Our
findings thus contribute to the individual performance literature by
suggesting that certain generative mechanisms are not as critical
for explaining the existence of individual output distributions. In
particular, results challenge past conclusions indicating the perva-
siveness of the pure power law distribution and its generative
mechanism (i.e., self-organized criticality). Reducing theory this
way creates greater theoretical parsimony and allows researchers
to “reduce areas of focus and avoid time spent on fruitless avenues
of inquiry” (Leavitt et al., 2010, p. 645).

Our results also lead to theoretical premises regarding the link
between past and future individual output. First, not all types of past
individual output predict future individual output. Instead, past indi-
vidual output in terms of output accumulation rate, but not initial
output, predicts future individual output. Second, high variability in
individual output would be followed by even higher, not lower,
variability in individual output in the future. These premises, in turn,
contribute to efforts to go beyond the dominant perspective that
focuses on knowledge, skills, abilities, and other individual charac-
teristics (KSAOs) as predictors of future individual output—a model
that “seems to have reached a ceiling or plateau in terms of its ability
to make accurate predictions about future [individual output]” (Cascio
& Aguinis, 2008, p. 141). In addition, our manuscript offers contri-
butions to future research. Our taxonomy of distributions, accompa-
nied by a software package we make available free of charge, will
facilitate distribution pitting research on other variables in domains
concerned with the distribution of events. For example, our taxonomy
and methodological procedures may be useful for studying distribu-
tions of organizational citizenship behaviors and counterproductive
work behaviors in the individual performance literature, accidents in
the safety literature, and errors (made during error management train-
ing) in the training and development literature.

The remainder of our manuscript is structured as follows. First,
we offer a four-category taxonomy subsuming a total of seven
distributions. Second, we introduce distribution pitting as our
methodological framework as well as decision rules used to im-
plement distribution pitting. Third, we apply distribution pitting on
a data set consisting of 229 samples of individual output and
including approximately 625,000 individuals across a broad range
of occupations, types of individual output measures, types of
collectives, and time frames. Finally, we discuss implications of
our taxonomy and distribution pitting results for theory, future
research, and practice.
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Taxonomy of Individual Output Distributions

We introduce a taxonomy of distributions that is new to the
organizational science literature and use it specifically in the
domain of individual output. The taxonomy consists of a total of
seven distributions, which are grouped into four categories of
distributions: (1) pure power law; (2) lognormal; (3) exponential
tail (including exponential and power law with an exponential
cutoff); and (4) symmetric or potentially symmetric (including
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normal, Poisson, and Weibull; Clauset, Shalizi, & Newman, 2009).
The two distributions in the exponential tail category share several
key characteristics and, therefore, are grouped together. The same
reasoning applies to the three distributions in the symmetric or
potentially symmetric category. Figure 1 includes generic graphic
depictions for each of the distributions in our taxonomy.

Before we describe the distributions, we highlight four charac-
teristics of our taxonomy that are crucial for theory development

Pure Power Law Distributions
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Figure 1. Generic visual representation of seven types of distributions (see Table 1 for more detailed

descriptions of each). Pure power law (a = 1.5); lognormal (. = 5, ¢ = 2); exponential tail distributions:
exponential (A = 0.5), power law with an exponential cutoff (o« = 1.5, N = 0.01); symmetric or potentially
symmetric distributions: normal (u = 100, o = 1), Poisson (i = 10), and Weibull (3 = 20, A = 10). In each
of the panels, except the one containing the Poisson distribution, the x-axis represents values of a continuous
variable, whereas the y-axis (“Density”) represents the likelihood of the continuous variable taking on a given
value or range of values. In the panel containing the Poisson distribution, the x-axis represents values of a
discrete variable, whereas the y-axis (“Mass”) represents the likelihood of the discrete variable taking on a given
discrete value. Each of the non-Poisson distributions shown above can model both real and discrete variables,
but the Poisson distribution can only model discrete variables.
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and testing. First, we focused on these seven particular distribu-
tions because one or more of the seven distributions likely explain
the majority of natural phenomena (Gupta, & Kundu, 1999; Limp-
ert, Stahel, & Abbt, 2001; Sornette, 2006). For instance, past
studies have used one or more of the seven distributions to gen-
erate and test theory across a wide variety of scientific fields
including physics (Bak, 1996), geology (Kile & Eberl, 2003),
entomology (Lenoir, Hefetz, Simon, & Soroker, 2001), and net-
work science (Amaral, Scala, Barthélémy, & Stanley, 2000). Our
focus on these seven distributions is also consistent with how
organizational science has benefitted greatly from borrowing the-
ory and methods from other disciplines including the natural
sciences (Whetten, Felin, & King, 2009). While other types of
distributions have been used in past research, these distributions
are typically narrower in their application. For example, the
gamma distribution has been used in several fields including
marketing (Platzer & Reutterer, 2016) and medicine (Yamada et
al., 2016). However, the Weibull distribution can take on a wider
variety of shapes, including the shapes of the gamma distribution
(Balasooriya & Abeysinghe, 1994). Indeed, studies have generally
favored the use of the Weibull distribution more than the gamma
distribution (Gupta & Kundu, 2001).

Second, each distribution category serves as an indicator of a
particular generative mechanism—a process leading to the exis-
tence of the focal distributional shape for the phenomenon under
investigation. For example, the pure power law distribution and its
associated generative mechanism, self-organized criticality, have
been used to explain sand avalanche sizes (Bak, 1996). The log-
normal distribution and its generative mechanism, proportional
differentiation, have been used to explain crystal sizes (Kile &
Eberl, 2003). The exponential tail distributions and their genera-
tive mechanism, incremental differentiation, have been used to
explain accumulated wages (Nirei & Souma, 2007) and number of
links per vertex (Amaral et al., 2000). Finally, studies have used
(potentially) symmetric distributions and their generative mecha-
nism, homogenization, to explain scent-related observations in
ants (Lenoir et al., 2001) and number of specific particles (i.e.,
gametocytes) taken by a mosquito in its bloodmeal (Pichon,
Awono-Ambene, & Robert, 2000). To enhance the relevance of
our work, we also link each generative mechanism to organiza-
tional science phenomena later in the manuscript.

Third, as another important characteristic of our taxonomy re-
lated to theory development and testing, the four generative mech-
anisms associated with the distributions in our taxonomy are
mutually exclusive. Applied to the specific domain of individual
output, pure power law distribution’s generative mechanism, self-
organized criticality, suggests that individuals differ in terms of
total output because a small proportion of individuals experience
output shocks (i.e., unpredictable and extremely large output in-
creases). In contrast, lognormal distribution’s generative mecha-
nism, proportional differentiation, suggests that a small proportion
of individuals disproportionately benefit from output loops (i.e.,
increasingly larger output increases based on positive feedback
between past and future output). Meanwhile, the generative mech-
anism of exponential tail distributions, incremental differentiation,
suggests that some individuals enjoy larger output increments (i.e.,
linear increases in output) than others. The generative mechanism
of (potentially) symmetric distributions, homogenization, suggests

that individuals undergo output homogenization (i.e., reduction of
differences in individual output).

Fourth, our taxonomy adopts a results-based definition of indi-
vidual performance. In defining individual performance, prior re-
search has focused on behaviors (Beck et al., 2014; Campbell,
1990), results (Bernardin & Beatty, 1984; Minbashian & Luppino,
2014), or both (Viswesvaran & Ones, 2000). To reflect our adop-
tion of a results-based definition of individual performance, our
discussion of theory, results, and implications focuses on individ-
ual output, defined as an individual’s cumulative results over a
certain period of time (e.g., weeks, months, years, and lifetime).
Further, our focus is on explaining interindividual differences in
output as opposed to intraindividual changes in output. Processes
that generate differences among individuals (e.g., effects of rela-
tively stable individual differences) are not necessarily the same as
processes that generate differences within an individual over time
(e.g., effects of short-term fluctuations in a variable or certain
events; Dalal, Bhave, & Fiset, 2014; Dalal, Lam, Weiss, Welch, &
Hulin, 2009; Molenaar, 2004; Sitzmann & Yeo, 2013).

Next, we describe the four categories of distributions and their
associated generative mechanisms in greater detail. Then, from
each generative mechanism, we derive implications for theory
regarding the link between past and future individual output. In
addition, for each of the four categories of distributions, we offer
practical implications in terms of how to increase overall individ-
ual output and produce more top performers. As a preview and
summary, and to offer more detailed information beyond Figure 1,
Table 1 includes nontechnical and technical descriptions of each
distribution (including relevant equations and parameters) as well
as implications for theory and practice associated with the pres-
ence of each distribution.

Pure Power Law Distribution

The pure power law distribution consists of a long head and
often a very heavy (i.e., seemingly infinite) right tail. Compared to
the other distributions in the taxonomy, the pure power law dis-
tribution has the heaviest right tail. Pure power law distribution’s
parameter alpha (o) (>1) is the rate of decay, which denotes how
quickly the distribution’s right tail falls. So, the lower the value of
a (closer to 1), the heavier is the distribution’s right tail. For
example, in a pure power law distribution where a = 1.5 and
sample size (N) = 1,000 (as shown in Figure 1), the top 10% of
performers account for 99.5% of the total output, indicating a
small proportion of extremely productive individuals. Moreover,
the top performers may be very highly distinct (i.e., very high
variability in the right tail). In fact, in the pure power law distri-
bution shown in Figure 1, the first, second, third, and fourth largest
values are 664.7, 51.0, 171.1, and 47.1% greater than the second,
third, fourth, and fifth largest values, respectively. We note that
“pure power law” is equivalent to “power law,” and studies have
used the two labels interchangeably (e.g., Clauset et al., 2009).
Given the two labels, in this article, we choose to use pure power
law to avoid confusing it with the power law with an exponential
cutoff.

Generative mechanism: Self-organized criticality. The presence
of a pure power law distribution indicates self-organized criticality
as the generative mechanism (Andriani & McKelvey, 2009; Boisot
& McKelvey, 2011; Newman, 2005). Self-organized criticality
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states that individuals differ in terms of total value on an outcome
because, after some individuals reach critical states, seemingly
trivial events trigger increases on their outcome ranging from
small to extremely large. In self-organized criticality, a critical
state refers to a situation where components accumulated by an
individual interconnect. So, even a small event initially affecting a
single component may in turn impact other components that are
directly or indirectly connected to the initially affected component.
Moreover, given that self-organized criticality does not require a
manager to determine the specific individuals who reach critical
states, the individuals are said to have self-organized to their
critical states—hence the label, self-organized criticality.

As an organizational science example, a scientist may be in a
critical state when he is working on a particular set of projects (i.e.,
accumulated components) such that the progress of one project
depends on the progress made in other projects (i.e., such that the
components are interconnected). So, a small event in the form of
a single breakthrough on one project may in turn lead to a number
of breakthroughs in other projects. Depending on how intricately
the scientist’s projects were interconnected as well as the number
of those projects, the initial breakthrough may quickly lead to a
very large number of new publications. Consistent with this ex-
ample, prior research has noted that star scientists often take
advantage of the “cross-talk” among various projects to derive
unexpected solutions and insights (Simonton, 2003, p. 479; Poin-
caré, 1921). As another organizational science example, a manager
may be in a critical state because she has proposed a number of
initiatives (i.e., accumulated components) that complement one
another (i.e., that are interconnected). So, top-management ap-
proval on one initiative may in turn lead to a number of her other
initiatives being approved. Depending on how well the manager’s
proposed initiatives complement one another as well as the impact
of those initiatives on the company, the first top-management
approval might even develop into a company-wide transformation
led by the manager.

As an illustration from outside of organizational science, a forest
is in a critical state when multiple clusters of trees (i.e., accumu-
lated components) are adjacent to one another (i.e., are intercon-
nected). In this situation, a small event in the form of a single
lightning strike on one tree cluster may start a fire that spreads to
other tree clusters that are directly or indirectly connected to the
tree cluster hit by the lightning strike. The exact amount of
the forest destroyed by the fire would depend on how intricately
the tree clusters were connected (Newman, 2005). As another
illustration from outside of organizational science, research in
physics has found that once enough sand grains (i.e., accumulated
components) have piled up to reach a “critical slope” (i.e., have
interconnected with each other), the drop of another sand grain on
the pile will cause a sand avalanche—with a magnitude that is
potentially extremely large. This process, repeated over many
times, will generate a pure power law distribution of sand ava-
lanche sizes (Bak, 1996).

Theoretical implications of self-organized criticality. Applied to
the domain of individual output, self-organized criticality suggests
that individuals differ in terms of total output because a small
proportion of individuals experience output shocks (i.e., unpredict-
able and extremely large output increases). Specifically, after some
individuals reach critical states, seemingly trivial events trigger
increases in their output ranging from small to extremely large. In
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addition, increases in individual output after reaching critical states
would be unpredictable, or nondeterministic (Bak, 1996; Boisot &
McKelvey, 2011; Sornette & Ouillon, 2012). This is because it
generally takes a long time to reach a critical state, and it is often
never reached in an individual’s lifetime. For instance, a scientist
in search of the cure for a particular cancer may persistently
engage in work behaviors (e.g., conducting experiments), but
nonetheless there is a very large amount of uncertainty as to
whether those behaviors will lead to the desired final result (e.g.,
finding the cure in her lifetime). Similarly, in many contexts
involving artists, writers, inventors, entrepreneurs, and managers,
individuals may doggedly pursue a difficult outcome to achieve
the “grand vindication [that nevertheless] may never come” (Ta-
leb, 2007, p. 87). The longer it takes for individuals to reach
critical states, the more rapidly compounding is the degrading
effect of measurement errors on prediction accuracy. Thus, it
becomes necessary to measure the past with virtually perfect
precision to predict distal outcomes such as output shocks, espe-
cially in complex settings involving human interactions (Taleb,
2007).

Consistent with the notion of output shocks, research in the
individual performance literature has found that behaviors and
results are often decoupled in a number of occupations such as
sales (Aguinis, 2013; Bommer, Johnson, Rich, Podsakoff, &
MacKenzie, 1995). Yet, going beyond the broad observation that
behaviors and results are often decoupled, self-organized criticality
more precisely suggests that the decoupling is much more severe
once individuals reach critical states, after which some individuals
would experience output shocks that are unpredictable. Further,
self-organized criticality implies that differences in terms of past
output may help predict future output among individuals who have
not yet reached a critical state. On the other hand, among those in
a critical state, differences in past output would fail to predict
individuals who are more likely to experience output shocks in the
future and to what extent. For instance, a series of experiments
found that songs considered top musical quality (the “best” songs)
were the most unpredictable in terms of future market share
(Salganik, Dodds, & Watts, 2006).

Practical implications of self-organized criticality. To gen-
erate a greater proportion of top performers, one recommendation
is to initially (but not permanently) provide similar amounts of
training, opportunities, and other resources to a wide range of
employees. This is consistent with self-organized criticality’s em-
phasis on the unpredictability of output shocks, as well as the fact
that there is no research to guide practice on how to identify and
predict when certain individuals reach critical states (after which
they would experience output shocks). Allocating similar amounts
of resources widely across individuals is similar to, but not as
precise as, using a real options-based 1/N (i.e., blind funding)
approach, where a decision-maker (e.g., venture capitalist) with N
investment possibilities “invest[s] in all of them in equal amounts”
(Taleb, 2012, p. 230). A 1/N approach to investing or, more
generally, investing similarly across many individuals can be use-
ful if, among many uncertain investment decisions, only few
investments would yield nearly unlimited payoff while other in-
vestments yield little or no payoff.

Another recommendation is to move resources out of those who
have not produced an expected level of output within a prespeci-
fied period of time, and subsequently invest more heavily in those
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who have successfully produced the expected level of output (Berk
& Kase, 2010). This would at least better incentivize individuals to
engage in various behaviors that could be (though not necessarily)
conducive to reaching a critical state, after which some individuals
would experience output shocks. Without incentivizing individuals
to continuously strive toward a critical state, it seems less likely
that an organization will benefit from output shocks.

Lognormal Distribution

The lognormal distribution consists of a heavy but ultimately
finite right tail and often a bell-shaped head. More precisely, a
distribution follows a lognormal distribution if its logarithm results
in a normal distribution. Though lognormal distributions may
appear quite similar to pure power law distributions in that both
types of distributions model the presence of extreme values, the
two are different because lognormal distributions “fall” (i.e., de-
cay) rapidly at the highest values of observations (Taleb, 2007, p.
326). Thus, compared to other distributions in our taxonomy, the
lognormal distribution has the second heaviest right tail (after the
pure power law distribution). Lognormal distribution’s parameter
mu (p) (>0) refers to the mean, which does not affect the heavi-
ness of the distribution’s right tail. In contrast, the higher the value
of the distribution’s standard deviation, or sigma (o) (>0), the
heavier is the right tail. For instance, in a lognormal distribution
where p = 5, 0 = 2, and N = 1,000 (as shown in Figure 1), the
top 10% of performers account for 74.4% of the total output,
indicating a small group of disproportionately productive individ-
uals. Moreover, the top performers tend to be highly distinct (i.e.,
high variability in the right tail). In fact, in the lognormal distri-
bution shown in Figure 1, the first, second, third, and fourth largest
values are 20.2, 45.3, 63.5, and 6.7% greater than the second, third,
fourth, and fifth largest values, respectively.

Generative mechanism: Proportionate differentiation. The
presence of a lognormal distribution indicates proportionate dif-
ferentiation as the generative mechanism (Banerjee & Yakovenko,
2010; Gibrat, 1931; Mitzenmacher, 2004). There are two key
components in a proportionate differentiation process: initial value
and accumulation rate. Initial value refers to the amount of a
variable that each individual has accumulated during a relatively
short period of time (e.g., 1 year) since the beginning of a common
baseline (e.g., since the first date of employment for all individuals
hired in the same year). Accumulation rate is the average amount
of the variable that an individual produces per time period (e.g.,
sales generated per month). Given such, proportionate differenti-
ation states that individuals differ in terms of total value on an
outcome because of their differences with respect to the accumu-
lation rate and initial value on the outcome. Further, accumulation
rate and initial value on an outcome would interact (i.e., multiply
with each other). So, future amounts of the outcome would in-
crease by increasing amounts for some individuals, whereas future
amounts of the same outcome would stay at low levels for many
other individuals. In short, an outcome’s future value is a distinct
proportion (i.e., percentage) of the outcome’s initial value—hence
the label, proportionate differentiation.

As an organizational science example, an individual output
dimension among community organizers is the number of signa-
tures collected. Some organizers may initially obtain a larger
number of signatures (i.e., higher initial value) than others and, as
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a result, find it easier to obtain additional signatures because
people might be more willing to endorse something that other
people already have. If the same organizers also tend to more
quickly obtain signatures (i.e., higher accumulation rate) than
others, then these organizers may accumulate additional signatures
by increasingly larger amounts, thus benefiting greatly from pos-
itive feedback loops between the number of signatures obtained so
far and additional signatures obtained. On the other hand, many
other organizers may initially fail to obtain many signatures and
also obtain signatures more slowly. As a result, these organizers
may find it difficult over time to obtain additional signatures. This
is analogous to how two employees with different starting salaries
may further depart from each other in terms of future salary. For
instance, suppose Jessie and Sam begin their tenure on the same
job. If Jessie receives even a slightly higher starting annual salary
(i.e., initial value) compared to Sam, then Sam will not be able to
catch up to Jessie’s annual salary—that is, unless Sam enjoys a
higher rate of annual raises on her salary (i.e., accumulation rate)
large enough to eventually offset the initial differences. Similarly,
simulation research has shown that a seemingly trivial initial
difference between two groups in terms of performance ratings
may later lead to large differences in the two groups’ promotion
rates (Martell, Lane, & Emrich, 1996).

As another organizational science example, if a firm already has
a large amount of a resource (e.g., R&D know-how in a certain
area), the firm is in a better situation to accumulate more of the
same resource compared to other firms with low amounts of the
resource (Dierickx & Cool, 1989). In turn, because firms differ not
only on the initial amount of the resource but also on the accu-
mulation rate, future amounts of the resource would increase by
increasing amounts for some firms, thereby creating a heavy right
tail in the resulting distribution. In contrast, for many other firms,
future amounts of the resource would stay at low levels, possible
creating a bell-shaped head in the resulting distribution (Gabaix,
1999).

Across these examples of proportionate differentiation, each
observation (e.g., individual, firm) would accumulate a certain
positive amount of initial value because of the observation’s ac-
cumulation rate and/or luck on the focal outcome (Barabdsi, 2012).
Regarding time of measurement, initial value can be measured as
soon as the opportunity to accumulate initial value is available
(e.g., first year out of graduate school for researchers, since the
foundation of a firm).

Finally, unlike in self-organized criticality (i.e., pure power law
distribution’s generative mechanism), it is not necessary in a
proportionate differentiation process for individuals to have
reached critical states for them to have large differences with
respect to an outcome. Instead, in proportionate differentiation,
outcome values are a function of the product between accumula-
tion rate and initial value on the outcome. Because of this distinc-
tion between self-organized criticality and proportionate differen-
tiation, the highest and most extreme values in a pure power law
distribution are unpredictable, whereas those in a lognormal dis-
tribution can be predicted as long as the accumulation rate and
initial value are known.

Theoretical implications of proportionate differentiation.
Applied to the domain of individual output, proportionate differ-
entiation suggests that individuals differ in terms of total output
because a small proportion of individuals disproportionately ben-
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efit from output loops (i.e., increasingly larger output increases
based on positive feedback between past and future output). Spe-
cifically, individuals differ in terms of output accumulation rate
(i.e., output generated per opportunity to produce) and initial
output (i.e., output accumulated so far in the beginning of an
individual’s career or tenure at an organization). In turn, the
product between each individual’s output accumulation rate and
initial output means that many individuals would only reach low
levels of future output, whereas some individuals would accumu-
late future output by increasingly larger amounts.

Consistent with the notion of output loops, research in the indi-
vidual performance literature has noted that for some occupations or
individual output dimensions, additional output requires fewer re-
sources (e.g., time, effort) than does initial output (Aguinis et al.,
2016). That is, the marginal cost of output decreases as more output
is produced, and this helps explain why future individual output
would increase proportionately based on initial individual output. Yet,
going beyond the notion that additional individual output may require
fewer resources than initial individual output, proportionate differen-
tiation allows for the possibility that even if a person has exceptionally
high initial output because of luck, the person’s total output may
eventually be surpassed by another individual with a superior output
accumulation rate. That is, arbitrary or random differences in
initial individual output may not lead to long-term differences in
individual output (Mankiw, 2013; van de Rijt, Kang, Restivo, &
Patil, 2014). On the other hand, proportionate differentiation also
allows for the possibility that arbitrarily or randomly accumulated
initial outputs for some individuals may be so large that other
individuals with superior output accumulation rates are unable to
catch up over time. Going back to the example involving commu-
nity organizers, those with higher accumulation rates are more
likely to initially obtain signatures with which to obtain additional
signatures—though the initial number of signatures obtained, at
least to some extent, may be attributed to “dumb luck” (Barabasi,
2012, p. 507).

Practical implications of proportionate differentiation. To
develop and retain top performers, one recommendation is to
allocate different amounts of resources across individuals based on
their output accumulation rates and also past output. The reason is
that, in proportionate differentiation, an individual’s future output
levels are a function of the product between her output accumu-
lation rate and initial output. Another recommendation is to main-
tain large differentiation in resource allocation not only between
top and ordinary performers, but also among top performers be-
cause of their large output differences in a lognormal distribution.

Exponential Tail Distributions

Exponential tail distributions have positively skewed tails that
fall rapidly (i.e., decay at an exponential rate). These distributions
include the exponential distribution and power law with an expo-
nential cutoff. The exponential distribution consists of a long head
and a somewhat heavy right tail. Exponential distribution’s param-
eter lambda (\) (>0) is the rate of decay, which denotes how
quickly the distribution’s right tail falls. So, the lower the value of
N\ (closer to 0), the heavier is the distribution’s right tail. For
instance, in an exponential distribution where A = 0.5 and N =
1,000 (as shown in Figure 1), the top 10% of performers account
for 32.8% of the total output. Moreover, the top performers tend to
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be similar (i.e., low variability in the right tail). In fact, in the
exponential distribution shown in Figure 1, the first, second, third,
and fourth largest values are 18.7, 7.4, 4.3, and 4.4% greater than
the second, third, fourth, and fifth largest values, respectively.

The power law with an exponential cutoff consists of a long
head and an initially heavy but then increasingly falling right tail.
Specifically, in a power law with an exponential cutoff, parameters
alpha () (>1) and lambda (\) (>0) are both rates of decay, which
denote how quickly the distribution’s right tail falls. So, the lower
the values of a (closer to 1) and N (closer to 0), the heavier is the
distribution’s right tail. Between the two rates of decay, the expo-
nential rate of decay \ is stronger in terms of making the distri-
bution’s right tail fall and thus increasingly influences the distri-
bution’s shape along higher values of x. For example, in power
laws with exponential cutoffs where a = 1.5 and N = 1,000, the
top 10% of performers account for 64.1% or 91.8% of the total
output depending on the value of \ (i.e., 0.5 vs. 0.01, respectively).
Moreover, the top performers can be similar (i.e., low variability in
the right tail), highly distinct (i.e., high variability in the right tail),
or something in-between. For instance, in a power law with an
exponential cutoff where = 1.5, A = 0.5, and N = 1,000, the
first, second, third, and fourth largest values are 66.8, 2.7, 29.7,
and 2.9% greater than the second, third, fourth, and fifth largest
values, respectively. However, in another power law with an
exponential cutoff where &« = 1.5, A = 0.01, and N = 1,000 (as
shown in Figure 1), the top performers are more distinct from one
another. That is, in the latter power law with an exponential cutoff,
the first, second, third, and fourth largest values are 53.9, 6.9, 35.6,
and 68.5% greater than the second, third, fourth, and fifth largest
values, respectively. Finally, depending on the distribution’s pa-
rameter values, its right tail may range from being as heavy as that
of a lognormal distribution to being even lighter than that of an
exponential distribution. As an example, in a power law with an
exponential cutoff where a = 1.5, X = 20, and N = 1,000, the top
10% of performers account for 29.6% of the total output. This
percentage is lower than in an exponential distribution with N =
0.5 and N = 1,000 (as shown in Figure 1), where the top 10% of
performers account for 32.8% of the total output.

Generative mechanism: Incremental differentiation. The
presence of an exponential tail distribution indicates incremental
differentiation as the generative mechanism (Amitrano, 2012;
Czirdk, Schlett, Madarasz, & Vicsek, 1998). Incremental differen-
tiation states that individuals differ in terms of total value on an
outcome because of their differences with respect to the accumu-
lation rate on the outcome. In incremental differentiation, accu-
mulation rate refers to the average amount of the variable that an
individual produces per time period (e.g., sales generated per
month). To be clear, incremental differentiation is distinct from
proportionate differentiation (lognormal distribution’s generative
mechanism) in two ways. First, incremental differentiation’s ac-
cumulation rate is slightly different from proportionate differenti-
ation’s accumulation rate. Though accumulation rate has a linear
(i.e., additive) effect on the focal outcome in both generative
mechanisms, incremental differentiation clearly acknowledges that
individuals with the highest accumulation rates may be subject to
diminishing returns. Second, both accumulation rate and initial
value explain individuals’ total values on an outcome in propor-
tionate differentiation, whereas incremental differentiation speci-
fies that an outcome’s future value is a function of accumulation
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rate but not initial value. In short, individuals’ values on an
outcome would differentiate at an incremental rate and, hence, the
generative mechanism’s label.

As an organizational science example of incremental differen-
tiation leading to an exponential distribution, differences across
individuals in terms of labor productivity lead them to accumulate
wages at different linear rates. The result is an exponential distri-
bution of accumulated wages (Nirei & Souma, 2007). As an
organizational science example of incremental differentiation lead-
ing to a power law with an exponential cutoff, consider medical
school doctors who have three primary responsibilities: Patient
care (i.e., clinical work), research, and teaching (Miller, 2000).
Compared to other doctors who began their tenure at the school
around the same time, some doctors may have disproportionately
greater amounts of cumulative patient care output (e.g., number of
successful treatments) because of their higher accumulation rates
regarding patient care (e.g., treatment success rates). However,
these doctors with superior accumulation rates in terms of patient
care would face steep costs if they try to see more patients or spend
more time per patient after reaching their full capacity (e.g., using
up all the extra time and energy freed up by research and/or
teaching load reductions). Such steep costs might include less time
for family, hobbies, and even basic life function including sleep.
Thus, medical school doctors who accumulate patient care output
more quickly than others would nonetheless be subject to dimin-
ishing returns, possibly giving rise to a distribution of cumulative
patient care output that follows a power law with an exponential
cutoff.

As an illustration of incremental differentiation from outside of
organizational science, research in network science has docu-
mented that vertices (e.g., airports) incur various costs when they
make additional links with other vertices (e.g., new departures to
other airports). As an airport reaches full capacity, adding new
arrivals and departures requires additional construction, extra staff,
and other capacity-expanding activities. Such requirements for
expanding the airport’s capacity would rapidly increase its cost of
adding a new arrival/departure. Thus, vertices that accumulate
links more quickly than other vertices would nonetheless be sub-
ject to diminishing returns, giving rise to a distribution of links per
vertex that follows a power law with an exponential cutoff (Ama-
ral et al., 2000)."

Theoretical implications of incremental differentiation.
Applied to the domain of individual output, incremental differen-
tiation suggests that individuals differ in terms of total output
because some individuals, compared to others, enjoy larger output
increments (i.e., linear increases in output). That is, individuals
differ in terms of output accumulation rate (i.e., output generated
per opportunity to produce), which tends to have linear effects on
their individual output levels rather than multiplicative and convex
effects. Moreover, individuals with the highest output accumula-
tion rates may be subject to diminishing returns. In particular, high
output accumulation rates may exhibit stronger diminishing re-
turns on individual output in lower-complexity jobs than in higher-
complexity jobs. In this sense, high output accumulation rates
might be less valuable for accumulating individual output in
lower-complexity jobs, where there are less likely to be positively
skewed distributions of total individual output (Aguinis et al.,
2016; Vancouver et al., 2016).
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Consistent with the notion of output increments, research in the
individual performance literature has noted that individual differ-
ences such as cognitive ability have a linear relation with individ-
ual performance (Whetzel, McDaniel, Yost, & Kim, 2010). In
addition, high values on other individual differences such as con-
scientiousness are often subject to diminishing returns in terms of
their effects on individual performance (Pierce & Aguinis, 2013;
Sackett, Gruys, & Ellingson, 1998). Yet, going beyond the obser-
vation that various individual differences have linear effects on
outcomes with possibly diminishing returns, incremental differen-
tiation offers greater theoretical parsimony by simply describing
each individual in terms of a distinct output accumulation rate.
Furthermore, because incremental differentiation states that an
outcome’s future value is a function of accumulation rate but not
initial value, incremental differentiation departs from prior re-
search suggesting that past individual output influences future
individual output through a positive feedback mechanism (e.g.,
Aguinis et al., 2016; Vancouver et al., 2016).

Practical implications of incremental differentiation. To
generate greater overall output, one recommendation is to heavily
invest in individuals with higher output accumulation rates than
others. In other words, incremental differentiation suggests that it
is better to allocate resources variably across individuals rather
than similarly. The reason is that past output in terms of an
individual’s output accumulation rate determines future output.
Moreover, an organization may benefit from ensuring relatively
small compensation differences among top performers—as indi-
cated by the often, but not always, low variability in an exponential
tail distribution’s right tail. Nonetheless, exponential tail distribu-
tions of individual output still allow for large compensation dif-
ferences between top and ordinary performers.

Symmetric or Potentially Symmetric Distributions

Distributions in this category have symmetric tails or often have
nearly symmetric tails. These distributions include the normal,
Poisson, and Weibull distributions. The normal distribution con-
sists of a bell-shaped body and symmetric tails that quickly be-
come light along values further from the mean. Normal distribu-
tion’s parameter mu () (>0) refers to the mean, which does not
affect the heaviness of the symmetric tails. In contrast, the lower
the value of the distribution’s standard deviation, or sigma (o)
(>0), the lighter are the distribution’s symmetric tails. For in-
stance, in a normal distribution where o = 100, 0 = 1, and N =
1,000 (as shown in Figure 1), the top 10% of performers account
for only 10.3% of the total output. Only the normal distribution
never has a skew different from zero (or near zero) in our taxon-
omy.

The Poisson distribution has a bell-shaped head and possibly a
somewhat heavy right tail consisting of relatively low counts.
Poisson distribution’s parameter mu () (>0) is the mean, which
also equals the variance. The lower the value of w (i.e., closer to
0), the heavier is the distribution’s right tail. As an example, in a
Poisson distribution where i = 100 and N = 1,000, the top 10%

! Incremental differentiation does not require decreases in each individ-

ual’s output accumulation rate over time. Instead, the increasing cost per
additional output at the highest levels of output accumulated results in
diminishing returns and, therefore, a power law with an exponential cutoff.



n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

NOT ALL NONNORMAL DISTRIBUTIONS ARE CREATED EQUAL

of performers account for 11.9% of the total output. However, in
another Poisson distribution where p. = 10 and N = 1,000 (as
shown in Figure 1), the top 10% of performers account for 15.8%
of the total output. Unlike other distributions in the taxonomy, the
Poisson distribution can model only discrete values (i.e., counts)
and, thus, always has a jagged curve.

The Weibull distribution often consists of a bell-shaped head
and a slight left skew. Specifically, one parameter of the Weibull
distribution, lambda (\) (>0), is the extent to which the distribu-
tion is pushed down and stretched to the sides. So, the higher the
value of N (further from 0), the lower is the distribution’s height.
Another parameter of the Weibull distribution, beta () (>0), is
the extent to which the distribution’s head is pushed to the right.
So, the higher the value of 3 (further from 0), the heavier is the
distribution’s left tail. For example, in a discrete Weibull distribu-
tion where 3 = 20, N = 10, and N = 1,000 (as shown in Figure
1), the median and mean were 10 and 9.73, respectively, indicating
a slight left skew. However, the distribution is so flexible that it
can take on other shapes. Depending on other (3 values, the
distribution’s right tail may also range from being (very) heavy
(i.e., B < 1) to as light as a normal distribution’s right tail (e.g.,
B = 3.5).

Generative mechanism: Homogenization. The presence of
symmetric or potentially symmetric distributions indicates homog-
enization as the generative mechanism (Araujo & Herrmann, 2010;
Seminogov, Semchishen, Panchenko, Seiler, & Mrochen, 2002;
Spear & Chown, 2008). Homogenization is a process that reduces
differences among individuals in terms of their values on an
outcome. Unlike other generative mechanisms we discussed pre-
viously (i.e., self-organized criticality, proportionate differentia-
tion, and incremental differentiation), which refer to how differ-
ences among individuals increase (i.e., increased heterogeneity),
homogenization refers to how differences decrease over time (i.e.,
increased homogeneity)—hence the label, homogenization.

As an organizational science example, differences across indi-
viduals regarding characteristics such as attitudes often decrease
over time through the mechanisms of attraction, selection, and
attrition (Ployhart, Weekley, & Baughman, 2006; Schneider,
1987). In addition, uniform expectations of production or service
reduce the differences in output among assembly line workers
(e.g., Groshen, 1991) and service workers (e.g., Das, Das, &
Mackenzie, 1996; Tepeci, 1999). As an illustration of homogeni-
zation from outside of organizational science, research in entomol-
ogy found that mouth-to-mouth feeding, social grooming, and
other physical contact (i.e., group dynamics) among ants homog-
enized their scent and led to (nearly) normal distributions of
scent-related observations (Lenoir et al., 2001).

Even if situational constraints consist of a floor and ceiling that
are unequally strong, the result may nonetheless be reduced dif-
ferences across individuals in terms of their values on an outcome.
That is, in the presence of an unequally strong floor and ceiling,
random fluctuations around a mean value alone may lead to a
(nearly) normal distribution, a Poisson distribution possibly char-
acterized by a somewhat heavy right tail (Vancouver et al., 2016),
or a Weibull distribution possibly characterized by a (slight) left or
right skew (Newby & Winterton, 1983; Rinne, 2008). Examples of
such instances include income quota by taxi drivers per day
(Camerer, Babcock, Loewenstein, & Thaler, 1997) and number of
arrests made by police officers per month (Meng & Burris,
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2013)—where output differences among individuals are reduced
despite production or service expectations that constitute an un-
equally strong floor and ceiling.

Theoretical implications of homogenization. Applied to the
domain of individual output, homogenization suggests that indi-
viduals undergo output homogenization (i.e., reduction of differ-
ences in individual output). The reason is that individuals are
subject to situational constraints that act as a floor and ceiling to
future output differences. Consistent with the notion of output
homogenization, research in the individual performance literature
has found that individual output dimensions that are central to a
job or position tend to approximate a normal distribution. For
example, a normal distribution can describe the number of publi-
cations among pretenured industrial-organizational psychologists
working in departments with research-oriented doctoral programs
(Beck et al., 2014). Indeed, promotion policies in research-oriented
departments generally lead to terminating scholars who fail to
produce a certain high number of publications (i.e., floor), thereby
limiting variability in the number of publications among scholars
in research-oriented departments. In short, in homogenization,
variability in past individual output would be followed by lower
variability in future individual output.

Practical implications of homogenization. To increase over-
all output, one recommendation is to implement human resource
management practices (e.g., selection, training) that lead to new-
comers and incumbents with higher and more uniform levels of
individual output. This would subsequently make it more cost-
efficient to make compensation, job assignment, and other orga-
nizational decisions (Aguinis & O’Boyle, 2014). Moreover, an
organization may benefit from focusing on managing collective
processes such as the perception that reporting mistakes and fail-
ures are valuable learning opportunities. This perception would
foster group learning, reduce variability in the number of errors
made by individuals, and decrease the total number of errors made
by the group (Leroy et al., 2012).

Summary

Our taxonomy consists of four categories of distributions: (1)
pure power law; (2) lognormal; (3) exponential tail (consisting of
exponential and power law with an exponential cutoff); and (4)
symmetric or potentially symmetric (consisting of normal, Pois-
son, and Weibull). From a theoretical perspective, these four
categories of distributions are associated with the following gen-
erative mechanisms, respectively: self-organized criticality, pro-
portionate differentiation, incremental differentiation, and homog-
enization. Next, we describe our empirical study aimed at
understanding which distribution more closely approximates each
observed distribution of individual output.

Method

Data

Our study had four critical data requirements. First, because
most distributions in our taxonomy (can) have heavy right tails, we
needed to include long time scales so that some of the observations
have enough time to develop into outliers (Andriani & McKelvey,
2009). For example, in the domain of finance, researchers have
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noted that “assessing extreme risks . . . at [short] time scales of 1
or 5 min leads to . . . dramatic under-estimations of the amount of
risk” (Malevergne, Pisarenko, & Sornette, 2005, p. 380). Accord-
ingly, our data set includes a variety of time frames (e.g., weeks,
months, years, and lifetime).

Second, we needed to ensure that our data set was not limited to
only one or a few contexts because our aim was to obtain a general
understanding about the shape of individual output distributions.
Accordingly, our study used data collected from a broad range of
occupations (i.e., researchers, entertainers, politicians, athletes,
and additional occupations consisting of manufacturing, service,
and clerical jobs), types of individual output measures (e.g., prod-
ucts produced, number of appearances, number of times won, and
revenue generated), and types of collectives (e.g., an entire pro-
fession, an organization, a unit in an organization).

Third, given our focus on interindividual output, we used data
that reflect output between individuals and not within individuals
over time. While an understanding of intraindividual output is
important, the generative mechanisms we previously discussed
focus on explaining interindividual differences and not necessarily
why a specific individual’s output would change over time.

Fourth, our study required distributions of individual output
(i.e., distribution level of analysis) rather than observations of
individual output (i.e., individual level of analysis). In other words,
we needed to collect a number of samples, where each sample
refers to a distribution (i.e., column, input vector) of individual
output. Because we required a large amount of data compared to
the typical organizational science study (e.g., Shen et al., 2011),
we used a data set consisting of 229 samples of individual output
collected via procedures as described in detail by Aguinis et al.
(2016) (we thank Aguinis, O’Boyle, Gonzalez-Mulé, and Joo for
allowing us to use the data). The total number of observations
across all samples is 633,876 (or approximately 625,000, adjusting
for multiple counts of a small number of observations across
samples). Further, each observation refers to an individual’s cu-
mulative output within a given period of time. We emphasize that
although we used the same raw data as Aguinis et al. (2016), our
theory, methodological approach, and analytic procedures are en-
tirely new.

Analysis

Overview of distribution pitting. Finding that a distribution
fits a sample is necessary but not sufficient evidence that a specific
generative mechanism is present (Stumpf & Porter, 2012). This is
because other distributions, which serve as indicators of alternative
generative mechanisms, may also fit the sample. So, it is important
to compare distributions with one another in terms of their fit to the
sample. To meet this requirement, we conducted distribution pit-
ting, a novel falsification approach-based method used for com-
paring distributions to identify those that do not represent the data
well. For implementation, we used a new R package we developed
called Dpit, which is available on http://www.hermanaguinis.com
or the Comprehensive R Archive Network (CRAN). To compare
the pure power law distribution with the other six distributions
shown in Figure 1 (i.e., 7 instances of distribution pitting), the R
package uses code available at http://tuvalu.santafe.edu/~aaronc/
powerlaws/. The package also includes code to compare the other
six distributions with one another (i.e., 14 additional instances of
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distribution pitting). After loading the Dpit package and our data
set of 229 samples, we entered one command line in R: out <-
Dpit(samples). This command led to comparing all seven distri-
butions with each other per sample (i.e., 21 instances of distribu-
tion pitting per sample), completing a total of 4,809 instances of
distribution pitting (= 21 instances of distribution pitting * 229
samples).

Because we needed to complete a large number of analyses, we
incorporated two features into the Dpit package designed for
facilitating its use in the future. First, Dpit incorporates “for loop”
functions to create a separate row containing results for each
sample until the entire data set has been analyzed. The for loop
functions also automatically clean each sample by removing miss-
ing cases and nonpositive values that lead to incalculable expres-
sions (e.g., the log of zero is undefined). Second, Dpit skips over
any unsuccessful calculations and continues analyzing the remain-
der of the data. When calculations fail (e.g., sample size was too
small), the package prints “NA” entries in the relevant cells of the
results matrix before continuing with subsequent calculations.
These automation features are not available in other software
packages, which are also often limited to comparing the pure
power law distribution with a subset of nonnormal distributions
included in our taxonomy (e.g., poweRlaw package in R; Gil-
lespie, 2014).

Decision rules. Because the shape of an individual output
distribution may be the result of multiple mechanisms, we applied
three decision rules that are ipsative (i.e., comparative) in nature to
identify the likely dominant distribution per individual output
sample. First, we used distribution pitting statistics generated from
our Dpit package. Per sample, and for each instance of distribution
pitting involving two distributions, the Dpit package provides two
types of statistics: a loglikelihood ratio (LR) and its associated p
value. Given that our R package, or Dpit, treats one of the two
focal distributions as the “first” distribution and the other as the
“second” distribution, LR quantifies the degree to which the first
distribution fits better than the second distribution. So, a positive
LR value means that the second distribution fits worse, whereas a
negative LR value means that the first distribution fits worse. The
p value of each LR value indicates the extent to which random
fluctuations alone likely explain the presence of a nonzero LR
value, such that LR = 0 constitutes the null hypothesis (Clauset et
al., 2009). The lower the p value, the less likely that the LR value
is simply because of chance. We adopted the p value cutoff of 0.10
(Clauset et al., 2009). Per individual output sample, if only one
type of distribution was never identified as being the worse fitting
distribution, then we concluded that the particular type of distri-
bution was the likely dominant distribution. However, if multiple
types of distributions were never identified as being the worse
fitting distribution, we then applied the remaining two decision
rules, as explained in the following.

In the second decision rule, we applied the principle of parsi-
mony to samples for which the likely dominant distribution was
not yet determined (i.e., samples for which multiple types of
distributions were never identified as being the worse fitting dis-
tribution despite implementing the first decision rule). So, for two
nested distributions, the distribution with more parameters is the
worse explanation for the observed distribution at hand. Though
the distribution with more parameters is guaranteed to have equiv-
alent or superior fit to the data, this comes at the price of reduced
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parsimony and, therefore, increases the risk that the fitted model
will be sample-specific (i.e., not generalizable). Our taxonomy
contains three pairs of nested distributions: (a) power law with an
exponential cutoff (two parameters) and pure power law distribu-
tion (one parameter); (b) power law with an exponential cutoff
(two parameters) and exponential distribution (one parameter); and
(c) Weibull distribution (two parameters) and exponential distri-
bution (one parameter). So, for example, if the first decision rule
identified neither the power law with an exponential cutoff nor the
pure power law distribution as being the worse fitting distribution,
we then used the second decision rule to identify the former
distribution as being the worse explanation for the observed dis-
tribution. Next, we applied the third decision rule to samples for
which the likely dominant distribution was still not determined
(i.e., samples for which multiple types of distributions were never
identified as being the worse fitting distribution even after imple-
menting the first two decision rules).

In the third decision rule, we again applied the principle of
parsimony—but this time, we focused on parsimony in terms of
choosing the distribution with fewer possible distribution shapes.
Specifically, a flexible distribution constitutes a broader category
of distribution shapes encompassing the shapes of an inflexible
distribution. With respect to our taxonomy, flexible distributions
include the lognormal, Poisson, and Weibull distributions, whereas
inflexible distributions include the pure power law, exponential,
power law with an exponential cutoff, and normal distributions.
For example, a Poisson distribution (i.e., a flexible distribution)
can either have a certain amount of right skew or approximate a
normal distribution with symmetric tails depending on its p value.
In contrast, a normal distribution (i.e., an inflexible distribution)
will always have symmetric tails regardless of its . and o values.
As another example, a discrete Weibull distribution (i.e., a flexible
distribution) where 3 = 20 and A = 10 has a slight left skew,
whereas an exponential distribution (i.e., an inflexible distribution)
will always have a right skew and never a left skew regardless of
its N value. In short, inflexible distributions are nested within
flexible distributions in terms of shape. Thus, when a flexible
distribution and an inflexible distribution remain after using the
second decision rule, the principle of parsimony dictates that we
choose the distribution with fewer possible distribution shapes
(i.e., the inflexible distribution) rather than the other distribution
with more possible distribution shapes (i.e., the flexible distribu-
tion). To be clear, the output produced from the Dpit package
allows users to derive results after implementing the first decision
rule, the first two decision rules, and all three decision rules.

Accuracy of distribution pitting and decision rules. We
conducted a simulation study to assess the accuracy of our meth-
odological procedures (i.e., distribution pitting and the three deci-
sion rules). Results indicated that accurate decisions were over-
whelmingly more frequent compared to false positive and false
negative decisions. Across both the discrete and continuous data
we simulated, our procedures correctly identified the dominant
distribution 91.2% of the time, while Type 1 and 2 error rates were
8.5 and 8.8%, respectively. Our methodological procedures are
even more accurate when results are derived based on how well
they identify the correct distribution category. Across both the
discrete and continuous data we simulated, our procedures cor-
rectly identified the dominant distribution category 98.5% of the
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time, while the Type lor 2 error rate was only 1.5%. Appendix A
includes a detailed description of the simulation study.

Moreover, we conducted a follow-up study to check the extent
to which the absence of the third decision rule reduces the accu-
racy of results. To do so, we used the same discrete and continuous
data simulated in Appendix A. However, unlike the study de-
scribed in Appendix A, the follow-up study only applied the first
two decision rules to the simulated data. Results indicated that
using decision rules #1 and #2 while not using the third decision
rule reduces the accuracy of conclusions regarding the likely
dominant distribution. Across both discrete and continuous data,
using the first two decision rules while not the third decision rule
only led to correctly identifying the dominant distribution 58% of
the time (= [67 + 84]/260). This accuracy rate is much lower than
the accuracy rate of 91.2%, which we obtained in Appendix A by
using all three decision rules. Appendix B includes a detailed
description of this follow-up study. Because of these reasons, we
based our conclusions and implications on results derived after
using all three decision rules, instead of results derived after using
the first decision rule or the first two decision rules only, as
described next.

Results

Table 2 provides a summary of results showing the number of
times each distribution was identified as the likely dominant dis-
tribution. Further, for each of the 229 samples, Table 3 shows the
likely dominant distribution or whether the likely dominant distri-
bution was undetermined—after implementing the first decision
rule, the first two decision rules, and all three decision rules. Also,
as an illustration, Table 4 shows detailed distribution pitting sta-
tistics for the first two and last two samples in our data set. A
complete table including detailed results for each of the 229
samples is available as supplemental material at http://dx.doi.org/
10.1037/apl0000214.supp.

As shown in Table 2, the power law with an exponential cutoff
was the likely dominant distribution for 49.34% of our samples
(113 out of 229), and the exponential distribution was the likely
dominant distribution for 25.33% of our samples (58 out of 229).
So, for 75% of the samples (i.e., 171 out of 229), the likely

Table 2
Summary of Distribution Pitting Results: Number of Times Each
Distribution was Identified as the Likely Dominant Distribution

Generative
Distribution mechanism Count  Percentage
Pure power law Self-organized 5 2.18%
criticality
Lognormal Proportionate 13 5.68%
differentiation
Exponential Incremental 58 25.33%
differentiation
Power law with an exponential Incremental 113 49.34%
cutoff differentiation
Normal Homogenization 11 4.80%
Poisson Homogenization 0 .00%
Weibull Homogenization 8 3.49%
Undetermined NA 21 9.17%
Total 229 100%
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Table 4
Distribution Pitting Statistics: Illustration Based on the First Two and Last Two Samples
NormvPL NormvCut NormvWeib NormvLogN NormvExp NormvPois
PLvCut PLvWeib PLvLogN PLVExp PLvPois
CutvWeib CutvLogN CutvExp CutvPois
WievaogN Weivaxp WeibvPois
LogNvExp LogNvPois
Occupation N ExpvPois
1. Researchers (agriculture) 25,006 —42.6 (0) —43.6 (0) —43.96 (0) —43.53 (0) —47.72 (0) —57.31 (0)
—168.13 (0) —2.17 (.03) —10.98 (0) 20.06 (0) 21.79 (0)
6.08 (0) —.57(.57) 22.86 (0) 22.45 (0)
—6.37 (0) 23.65 (0) 22.65 (0)
22.98 (0) 22.45 (0)
22.01 (0)
2. Researchers (agronomy) 8,923 —18.36 (0) —18.9 (0) —18.88 (0) —18.89 (0) —20.21 (0) —22.97 (0)
—53.5(0) —4.03 (0) —5.92(0) 6.48 (0) 9 (0)
A7 (.64) —2.24 (.03) 8.67 (0) 9.95 (0)
—-1.22(.22) 9.01 (0) 10.22 (0)
8.88 (0) 10.01 (0)
10.53 (0)
228. Electrical fixture 40 4.46 (0) 2.88 (0) 29 (.77) —.72 (47) 3.19 (0) 1.68 (.09)
assemblers —10.97 (0) —5.38 (0) —4.65 (0) —11.35(0) —.8(42)
—3.67 (0) —3.11(0) 7.62 (0) .04 (.96)
—.64 (.52) 3.91 (0) 1.45 (.15)
3.4 (0) 1.77 (.08)
—.12(.9)
229. Wirers 35 1.37 (.17) 11(91) —1.7 (.09) —1.87 (.06) 36 (.72) 2.21(.03)
—6.78 (0) —3.03 (0) —2.61 (.01) —5.4(0) 1.36 (.17)
—1.66 (.1) —1.32(.19) 3.38 (0) 1.79 (.07)
—.08 (.93) 1.89 (.06) 2.2 (.03)
1.54 (.12) 2.27 (.02)
1.71 (.09)
Note. N = sample size; LR = loglikelihood ratio. Distribution pitting results are presented in the final six columns of the table. For each instance of

distribution pitting, the LR value is presented followed by its p-value in parentheses. In the first row of the table, distribution names are abbreviated:
Norm = Normal; PL = Pure power law; Cut = Power law with an exponential cutoff; Weib = Weibull; LogN = Lognormal; Exp = Exponential; Pois =
Poisson. Distribution pitting titles are presented such that the first distribution is compared with the second distribution (e.g., NormvPL = Normal
distribution vs. pure power law). Positive LR = superior fit for the first distribution as listed in the distribution pitting title. Negative LR = superior fit
for the second distribution as listed in the distribution pitting title. Poisson’s LR and p-values are not available for continuous data. In the full table version
derived by our Dpit R package, there are additional descriptive statistics per sample (e.g., mean, standard deviation) not shown in the abbreviated version
here. A complete table including detailed results for each of the 229 samples is available as supplemental material at http://dx.doi.org/10.1037/apl0000214

.supp.

Discussion

Our taxonomy advances theory regarding individual output dis-
tributions by offering greater precision beyond the normal versus
nonnormal dichotomy adopted in prior studies. Indeed, past re-
search in various fields has noted that without taxonomies, “there
could be no advanced conceptualization, reasoning, language, data
analysis or, for that matter, social science research” (Bailey, 1994,
p. 1). For example, in biology, taxonomies were essential to
Darwin’s theory about the evolution of organisms (Ereshefsky,
1997; Leather & Quicke, 2009). Research in astronomy used
taxonomies to understand various phenomena such as potentially
habitable planets (Bailey, 2007). Research in organizational sci-
ence also documented the importance of more precisely catego-
rizing the multiple dimensions of a construct, such as feedback
seeking (Gong, Wang, Huang, & Cheung, 2014), human resource
policy regarding older workers (van Dalen, Henkens, & Wang,
2015), organizational context relevant to newcomer socialization
(Wang, Kammeyer-Mueller, Liu, & Li, 2015), and personality
(Erdheim, Wang, & Zickar, 2006). In our study, similar to past
studies demonstrating the importance of taxonomies, we devel-

oped a taxonomy that contributes to a better understanding of
individual output distributions and their generative mechanisms.

We then offered a novel distribution pitting approach for as-
sessing which types of distributions are better at representing
individual output distributions. To facilitate future research, we
developed an R package, or Dpit, that implements distribution
pitting. Dpit serves as a catalyst for theory advancement via
falsification—that is, “pursuit of failure” (Gray & Cooper, 2010)
or “theory pruning” (Leavitt et al., 2010). This way, Dpit is a
useful methodological tool for reducing dense theoretical land-
scapes. However, because the shape of an individual output dis-
tribution may be the result of multiple mechanisms, we also
developed and used three decision rules to determine the likely
dominant (rather than the only) shape and generative mechanism
per observed distribution.

We subsequently applied Dpit and the three decision rules to
229 samples of individual output, which include about 625,000
individuals across a broad range of occupations, types of individ-
ual output measures, types of collectives, and time frames. For
75% of the samples (i.e., 171 out of our 229 individual output


http://dx.doi.org/10.1037/apl0000214.supp
http://dx.doi.org/10.1037/apl0000214.supp

n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

1040

samples), results suggest that exponential tail distributions (i.e.,
exponential and power law with an exponential cutoff) and their
associated generative mechanism, incremental differentiation,
likely constitute the dominant distribution shape and explanation.
Specifically, right-skewed distributions are observed because some
individuals enjoy larger output increments (i.e., linear increases in
output) than others, and individuals with the highest output accu-
mulation rates may be subject to diminishing returns. Thus, our
results challenge past conclusions indicating the pervasiveness of
other distributions and their generative mechanisms discussed in
our taxonomy—in particular, the pure power law distribution and
its generative mechanism (i.e., self-organized criticality). The
overwhelming presence of exponential tail distributions and incre-
mental differentiation as their underlying generative mechanism
have important implications for theory, future research, and prac-
tice, as we explain next.

Implications for Theory

Implications for the individual performance literature.
Our results contribute to debates in organizational science regard-
ing the distributional nature of individual performance as well as
generative mechanisms of performance distributions (e.g., Aguinis
et al., 2016; Beck et al., 2014). In particular, Vancouver et al.
(2016) showed that a number of generative mechanisms could
operate simultaneously, thereby influencing the shape and amount
of positive skew in the resulting performance distributions. In
other words, depending on the generative mechanisms, there are
many possibilities as to the precise type of distribution describing
individual output distributions. Our results help narrow down these
possibilities by suggesting that exponential tail distributions likely
constitute the dominant model describing individual output distri-
butions.

More importantly, in terms of theory advancement, our study
provides evidence regarding the likely dominant generative mech-
anism underlying observed performance distributions. Specifi-
cally, the likely dominant generative mechanism for the shape of
individual output distributions is incremental differentiation. In
incremental differentiation, some individuals enjoy larger output
increments than others, and individuals with the highest output
accumulation rates may be subject to diminishing returns. Further,
in light of the nature of the samples we analyzed, incremental
differentiation suggests that there are significant antecedent differ-
ences (i.e., differences in output accumulation rates) even among
individuals producing top levels of output—which explain their
differences in total output. Specifically, the first four sample
groups we used consisted of an already elite subpopulation (i.e.,
the “cream of the crop”), as shown in Table 3: researchers with
publications in top five field-specific journals; award-winning or
otherwise highly regarded entertainers; national and state-level
politicians; and professional and collegiate athletes. For instance,
we examined researchers in an entire field who publish in top
journals no matter what their institutional affiliation, as opposed to
prior studies that focused specifically on researchers at Research-1
(R1) institutions based on the Carnegie Classification of Institu-
tions of Higher Education (i.e., Beck et al., 2014; Vancouver et al.,
2016). The reason is that our focus on an entire field more fully
captures the presence of individuals producing elite-level output. A
star researcher may choose to go to or stay at a non-R1 school
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because she is given an idiosyncratic deal (Hornung, Rousseau,
Glaser, Angerer, & Weigl, 2010). Indeed, studies indicate that
researchers who publish frequently in top journals do not always
work at R1 institutions, and not all researchers in R1 institutions
publish frequently in top journals (e.g., Aguinis, Suarez-Gonzalez,
Lannelongue, & Joo, 2012). In short, incremental differentiation
also helps explain conditional distributions (i.e., subpopulations)
of individual output—that is, individual output distributions that
are conditional on elite-level output.

In addition, given incremental differentiation as the likely dom-
inant generative mechanism of individual output distributions, our
results suggest that it may be largely unnecessary to invoke other
generative mechanisms discussed in our taxonomy (i.e., self-
organized criticality, proportionate differentiation, and homogeni-
zation) to explain individual output distributions. In other words,
our results suggest that output differences among individuals gen-
erally do not homogenize or increase at a nonlinear/explosive rate.
This way, our findings depart from prior studies that have heavily
relied on or emphasized homogenization (e.g., Groshen, 1991) or
nonlinear increases of individual output differences (e.g., Andriani
& McKelvey, 2009; Vancouver et al., 2016). By decreasing the
importance of borrowing from generative mechanisms other than
incremental differentiation, our results also contribute to theory
reduction. Reducing theory is important because it creates greater
theoretical parsimony and allows researchers to “reduce areas of
focus and avoid time spent on fruitless avenues of inquiry”
(Leavitt et al., 2010, p. 645).

In particular, we found that the pure power law distribution and
its generative mechanism, self-organized criticality, are not as
useful for explaining individual output distributions. This finding
largely challenges previous research invoking the pure power law
distribution or self-organized criticality to explain individual out-
put distributions. For example, according to extant theory, pure
power law distribution’s generative mechanism may lead to ex-
treme events that are “not predictable” and may affect multiple
units of analysis including individuals (Andriani & McKelvey,
2009, p. 1066). Prior research has also proposed that pure power
law distributions of individual output require theory focused on
“plausible anticipation” rather than “prediction” of extreme out-
comes (Crawford, 2012, p. 79). Though self-organized criticality
may be needed to explain various strategy and entrepreneurship
issues (Andriani & McKelvey, 2009; Crawford et al., 2015), our
results suggest that self-organized criticality is not a very impor-
tant framework for explaining individual output distributions.

We also found that the lognormal distribution and its generative
mechanism, proportionate differentiation, are not as important for
explaining individual output distributions. This finding largely
departs from prior studies on individuals that have invoked con-
cepts reflecting proportionate differentiation, which suggests the
presence of positive feedback between past and future individual
output. For instance, research has found that heavily right-tailed
distributions of individual output are more likely to emerge in
contexts where it is easier for individuals to draw on past success
to create future success (Aguinis et al., 2016, pp. 10—11). Further,
Vancouver et al. (2016, Simulation 10) found that heavily right-
tailed distributions of individual output emerge when the more
highly productive individuals receive greater amounts of resources
to be even more productive over time, while the less productive
individuals receive the same or lower amounts of resources and
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thus become limited in their future output. However, our results
suggest that proportionate differentiation is not the most likely
dominant generative mechanism of individual output distributions.

We do not mean, however, to imply that it is incorrect to consider
the involvement of any feedback or other contextual processes to
explain output differences among individuals. Incremental differenti-
ation does allow for an explanation based on limited instances of
nonincremental increases in individual output. Some individuals may
experience unpredictable and extremely large output increases, or
output shocks. Some other individuals may disproportionately benefit
from increasingly larger output increases based on positive feedback
between past and future output, or output loops. For example, more
people may consume an artist’s work by chance and, as a result, the
artist may enjoy additional patrons who generally prefer more popular
artists. Similarly, as another example, coaches can provide a weight-
lifter perceived as Olympics-worthy with superior training and other
valuable resources, which may lead to some explosive, nonincremen-
tal increases in individual output.

Nonetheless, because of the likely dominant role of incremental
differentiation, such output shocks or loops would be short-lived
and weak enough so that individuals accumulate output in a
primarily incremental manner (i.e., at a linear rate). In other words,
the process of reaching star-level individual output appears largely
incremental instead of being largely characterized by output
shocks or loops. Going back to the example involving artists, an
artist must have first created and improved her art piece by piece
for chance, publicity, or other types of events to create a positive
feedback loop between past and future output. Further, the role of
any feedback processes would ultimately be limited because an
artist can only create or improve her art at an incremental rate (e.g.,
Ericsson & Charness, 1994). Similarly, going back to the example
involving weightlifters, the role of any output shock or loop would
also be short-lived because, soon afterward, an Olympic weight-
lifter must return to painstakingly adding 1, 2, or 3 kg at a time to
her personal record as well as making sure to take time off or at
least “de-load” on the amount of weight she lifts to prevent injury,
among other things. This interpretation of incremental differenti-
ation is consistent with prior studies where allocation of additional
resources (e.g., opportunities) per se led to some, but ultimately
limited, positive feedback loops between past and future individual
output (e.g., McNatt & Judge, 2004; van de Rijt et al., 2014). Thus,
incremental differentiation means that feedback loops and similar
mechanisms do not play a prominent role in the individual output
context.

Implications for theory development. Our results also have
implications for developing theory regarding the link between past
and future individual output. On one hand, the “samples” approach to
predicting future individual output suggests that past individual output
would be the best predictor (Aguinis et al., 2016; Wernimont &
Campbell, 1968). The underlying rationale is that the closer the
point-to-point correspondence between the samples used for the pre-
dictor and criterion, the greater is the predictive power. On the other
hand, the “signs” approach suggests that knowledge, skills, abilities,
and other individual characteristics (KSAOs)—or signs of future
individual output—would be better predictors of future individual
output than is past individual output (Bangerter, Roulin, & Konig,
2012; Callinan & Robertson, 2000). Though prior evidence suggests
that KSAOs are generally superior or equally effective compared to
past individual output as predictors of future individual output (Kun-
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cel, Hezlett, & Ones, 2001), much of the recent successes in the model
focused on KSAOs and using validity coefficients as a metric are not
because of substantive improvements to our understanding of what
predicts performance but instead because of the use of statistical
correction techniques (Bosco, Aguinis, Singh, Field, & Pierce, 2015;
Cascio & Aguinis, 2008). Further, the signs approach focused on
KSAOs “seems to have reached a ceiling or plateau in terms of its
ability to make accurate predictions about future [individual output]”
(Cascio & Aguinis, 2008, p. 141). So, there is a need to go beyond the
dominant model emphasizing KSAOs and gain a more precise un-
derstanding of the link between past and future individual output. In
the following, and based on our findings, we develop theoretical
premises about the relation between past and future individual output.

First, our results suggest that not all types of past individual output
would effectively predict future individual output. Specifically, pro-
portionate differentiation implies that past individual output in terms
of both output accumulation rate and initial output predict future
individual output. In contrast, incremental differentiation implies that
past individual output in terms of output accumulation rate, but not
initial output, predicts future individual output. Given the two com-
peting perspectives, we found that incremental differentiation, not
proportionate differentiation, likely constitutes the dominant genera-
tive mechanism for most of our individual output samples. Thus,
results indicate that past individual output in terms of output accu-
mulation rate, but not initial output, would help significantly predict
future individual output. This is an important implication because,
despite some evidence that past individual output often does predict
future individual output, prior research has not been clear as to how
different definitions and operationalizations of past individual output
may affect the prediction of future individual output. Instead, studies
have focused on showing how a particular operationalization of past
individual output predicts future individual output. As examples,
studies have operationalized past individual output in terms of “the
last year of [objectively measured] collegiate performance” (Lyons,
Hoffman, Michel, & Williams, 2011, p. 162) or “gross sales commis-
sions averaged across a 3-month period” (Zyphur, Chaturvedi, &
Arvey, 2008, p. 220). Given such, our results more precisely clarify
that future individual output would be better predicted by past indi-
vidual output in terms of output accumulation rate rather than initial
output.

Second, our results suggest that high variability in individual output
would be followed by even higher, not lower, variability in individual
output in the future. That is, (potentially) symmetric distributions are
associated with homogenization, which implies that variability in past
individual output would be followed by lower variability in future
individual output. However, our results showed that (potentially)
symmetric distributions are less likely explanations for most of our
individual output samples. Further, we found that the dominant gen-
erative mechanism for most of our individual output samples was
incremental differentiation, which suggests that high variability in
individual output would be followed by even higher variability in
individual output in the future, especially if there is high variability
across individuals in terms of output accumulation rate.

Implications for Future Research

Moving forward, it would be interesting to use distribution pitting
along with computational modeling to triangulate on theories regard-
ing the individual output distributions. For example, future research
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may simulate distributions of publications based on a number of
models that incorporate different sets of individual characteristics
(e.g., proactivity in terms of seeking out collaborators). The same
study may then infer the most likely simulation model by using
distribution pitting to identify distributions that follow exponential tail
distributions—given that the majority of our researcher publication
samples followed exponential tail distributions (associated with the
generative mechanism of incremental differentiation).

In addition, future studies can examine the boundary conditions
of incremental differentiation as the generative mechanism of
individual output distributions. We described incremental differ-
entiation as a model where differences among individuals in terms
of output accumulation rate, but not initial output, predict their
future output levels. So, one future research direction is to opera-
tionalize individuals’ output accumulation rates in many different
ways, and check whether their relations with future individual
output differ from one another. Another direction is to examine
moderators of the relation between output accumulation rate and
future individual output. For example, is the relation between
output accumulation rate and future individual output weaker
among newcomers because their output-related information is
more ambiguous than that of incumbents (Tervio, 2009)?

Future research may also identify contexts that are better charac-
terized by generative mechanisms other than incremental differentia-
tion. One possibility is that incremental differentiation applies to
individual output measures referring to raw output, but not to mea-
sures referring to value generated from an individual’s raw output. As
one type of value-based measures of individual output, financial
measures have more upside potential (e.g., tripling of a company’s
stock value) than nonfinancial measures (e.g., number of competitions
won; Aoki & Yoshikawa, 2006). For example, top performers may
obtain opportunities (e.g., a CEO’s movement to a large corporation)
that allow them to increase financial output by multiple folds within
a relatively short period of time (e.g., rapid increases in market
capitalization attributed to a CEO). So, individual output based on
financial measures may instead follow pure power law or lognormal
distributions, thus indicating self-organized criticality or proportionate
differentiation as the likely dominant generative mechanism, respec-
tively. Other examples of value-based measures of individual output
include revenue generated by entrepreneurs, managers, inventors
(e.g., of the next major drug), high-tech employees (e.g., program-
mers), and salespeople dealing with big contracts (Aguinis et al.,
2016; Aguinis et al., 2017; Crawford et al., 2015)—that our data set
did not include. In fact, our individual output data mainly consisted of
raw output rather than value generated from an individual’s raw
output, as shown in Table 3 (exceptions are samples #96, #98, #100,
#102, #104, #106, #198-199, #206-207, #209, #211, and #214,
which are financial measures). In short, future research can adopt a
deductive approach to identify contexts where incremental differen-
tiation may not constitute the dominant explanation of individual
output distributions.

Finally, Dpit can be used for assessing the distribution of per-
formance defined as not only output but also behavior. For exam-
ple, future research can assess the distribution of organizational
citizenship behaviors, counterproductive work behaviors, or ag-
gression toward others (Liu et al., 2015). The use of Dpit may lead
to the discovery that, for example, a certain type of performance
behavior follows an exponential distribution, indicating incremen-
tal differentiation as the generative mechanism. In contrast, the use
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of Dpit may show that other types of performance behavior follow
(potentially) symmetric distributions, suggesting the presence of
homogenization as the generative mechanism. Dpit can also be
used for assessing the distribution of other events in organizational
science research such as accidents and errors (made during error
management training), which would contribute to the safety as
well as training and development literatures. Closely examining
the shape of performance behavior distributions will, in turn, lead
to a better understanding of the underlying generative mechanisms.

Implications for Practice

Given incremental differentiation as the likely dominant explana-
tion of individual output distributions, our results suggest that higher
variability in output accumulation rates will be associated with a
greater proportion of top performers. To facilitate even greater overall
output and production of top performers, an organization could heav-
ily select for individuals with the highest levels of output accumula-
tion rates. The organization can also disproportionately invest in the
training and development of individuals with already the highest
levels of output accumulation rates so that they reach even higher
levels of future output. We acknowledge that the shapes of individual
output distributions may change (e.g., increased length of the right
tail) as a result of following our practical advice. One reason is that
our practical recommendations may lead to nonincremental increases
in individual output among some individuals (e.g., feedback pro-
cesses). However, as previously discussed in the Implications for
Theory section, we also clarify that such nonincremental increases
would be limited in duration and strength because of the likely
dominant role of incremental differentiation. Our practical advice
would thus likely affect the parameter values of exponential tail
distributions, rather than changing the type of the distribution (e.g.,
into a lognormal or pure power law distribution).

We also derive practical implications directly from the shape of
exponential tail distributions. For example, based on fairness the-
ory, allocation of pay and other types of valued resources should
reflect the shape of individual output distributions (Aguinis &
O’Boyle, 2014). We more precisely recommend that compensation
practices reflect exponential tail distributions of individual output.
So, differences among individuals in terms of compensation
should be smaller than those implied in more heavily right-tailed
distributions (e.g., pure power law distribution, lognormal distri-
bution). An organization may also benefit from ensuring relatively
small compensation differences among top performers, as indi-
cated by the often, and not always, low variability in an exponen-
tial tail distribution’s right tail. Otherwise, large differences in
compensation among top performers may lead to perceptions of
unfairness, which can create or aggravate harmful competition and
workplace conflict among those top performers (Groysberg, Pol-
zer, & Elfenbein, 2011). This does not mean that organizations
should maintain small compensation differences among all indi-
viduals. Though small differences in compensation among top
performers may be warranted in an exponential tail distribution of
individual output, the distribution still allows for large differenti-
ation between top and ordinary performers.

Limitations and Additional Future Research Directions

We found that the two exponential tail distributions (i.e., indi-
cators of incremental differentiation) likely constitute the domi-
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nant distribution shape for the majority of our samples—that is, for
each of the first four sample groups (i.e., researchers, entertainers,
politicians, and athletes) as shown in Table 3. However, for most
of the samples in the last sample group, “additional occupations”
(e.g., manufacturing, service, and clerical jobs), neither of the two
exponential tail distributions was the likely dominant distribution.
That is, our methodological procedures led to the conclusion that
exponential tail distributions are the likely dominant distribution in
8 out of the 32 samples in the additional occupations sample group.
This raises the question of whether and how much our study’s
findings and implications are generalizable to the additional occu-
pations sample group. So, a future research direction is to assess
whether and how our results generalize to other occupations, jobs,
and organizational contexts.

Further, our results and implications apply to interindividual
distributions of output, but not necessarily to the intraindividual
level of analysis. For instance, even though we found that incre-
mental differentiation constitutes the likely dominant generative
mechanism at the interindividual level of output, follow-up studies
may find that individuals’ output accumulation rates mask theo-
retically and practically significant punctuations and bursts in
output accumulation within short periods of time. The reason is
that processes that generate differences among individuals are not
necessarily the same as processes that generate differences within
an individual over time (Dalal et al., 2014, 2009; Molenaar, 2004).
Using our methodological procedures, future research can examine
the shape of intraindividual distributions as well as their underly-
ing generative mechanism(s).

Finally, the three decision rules that we used for implementing
distribution pitting should not be interpreted as leading to clear-
cut, black-and-white results. Instead, our decision rules are de-
signed to help the user choose the most likely dominant distribu-
tion for a given dataset, given that the shape of an individual output
distribution may be the result of multiple mechanisms operating
simultaneously. In the future, methodological advances may allow
the user to identify and weigh the importance of each mechanism
contributing to the shape of an individual output distribution.

Concluding Comments

In retrospect, perhaps it was inevitable that we would derive
novel findings that to date have been masked by the normal versus
nonnormal dichotomy. In fields such as physics, research has
found that “a much more common distribution than the [pure]
power law is the exponential [distribution], which arises in many
circumstances” (Newman, 2005, p. 336). From a historical per-
spective, research in the natural sciences and mathematics offered
some of the earliest discussions about nonnormality in terms of the
pure power law distribution (e.g., Bak, 1996; Mandelbrot, 1963),
which was later introduced to the social sciences (e.g., Andriani &
McKelvey, 2009; Boisot & McKelvey, 2011), which in turn in-
fluenced organizational science research (e.g., Aguinis et al., 2016;
O’Boyle & Aguinis, 2012). Meanwhile, questioning the ubiquity
of pure power law distributions, research in other fields has also
accumulated evidence that many phenomena conform better to
other types of nonnormal and heavily right-tailed distributions
(e.g., Downey, 2001; Mitzenmacher, 2004; Newman, 2005;
Stumpf & Porter, 2012). Yet, this body of work had not been
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incorporated into organizational science research regarding indi-
vidual output distributions—that is, until now in our study.

Our taxonomy, distribution pitting methodology along with the
Dpit package, and empirical results derived from implementing
Dpit provided novel insights about individual output distributions
and their generative mechanisms. We found that exponential tail
distributions and their generative mechanism, incremental differ-
entiation, likely constitute the dominant distribution shape and
explanation of most individual output distributions. Thus, our
results challenge past conclusions indicating the pervasiveness of
other distributions and their generative mechanisms discussed in
our taxonomy. In particular, our results challenge the pervasive-
ness of the pure power law distribution and its generative mechanism
(i.e., self-organized criticality). We hope our taxonomy and the Dpit
package will serve as catalysts for future theory advancements regard-
ing the distributions and generative mechanisms of individual output
and many other variables in organizational science.
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Appendix A

Simulation Study to Investigate the Accuracy of Distribution Pitting and Decision Rules

Overview

We used R to simulate both discrete and continuous distributions. The
purpose of this simulation study was to assess the accuracy of our
methodological procedures for classifying distributions (i.e., distribution
pitting and the three decision rules). Our simulated distributions were
based on the parameter values of the seven generic distributions depicted
in Figure 1 (i.e., the pure power law, lognormal, exponential, power law
with an exponential cutoff, normal, Poisson, and Weibull distribution). In
particular, we simulated each of the seven generic distributions repeatedly
because R generates data randomly within the specified parameter val-
ue(s). In turn, each simulated distribution included 1,000 observations.

Method

First, we simulated 20 discrete distributions for each of the seven
generic distributions. As a result, we simulated a total of 140 distri-
butions, which we subsequently used to test the accuracy of our
methodological procedures for samples containing discrete data. Sec-
ond, we simulated 20 continuous distributions for each of the generic

Table Al

distributions except the Poisson distribution. Our simulation of con-
tinuous distributions did not include Poisson distributions, which can
only model discrete data. Thus, we simulated a total of 120 distribu-
tions, which we subsequently used to test the accuracy of our meth-
odological procedures for samples containing continuous data. We
then applied distribution pitting and the three decision rules to each of
the simulated distributions. To check how frequently our methodolog-
ical procedures may fail to correctly identify the true underlying
distribution, we calculated Type 1 and 2 error rates based on the
simulated discrete and continuous data, as described next.

Results and Discussion

A summary of results from our simulated data analyses can be found
in Table Al for discrete data and Table A2 for continuous data. Regard-
ing the discrete data, our methodological procedures led to correctly
identifying the dominant distribution 100% of the time for the pure power
law, lognormal, exponential, normal, and Weibull distributions. Among
the 20 true distributions of the power law with an exponential cutoff, we
correctly identified the dominant distribution in 19 instances, while in-

Distribution Identified as Dominant per Simulated Discrete Distribution Using Dpit

Distribution identified

Distribution identified

1D True distribution as dominant ID True distribution as dominant
1 Pure power law Pure power law 28 Lognormal Lognormal
2 Pure power law Pure power law 29 Lognormal Lognormal
3 Pure power law Pure power law 30 Lognormal Lognormal
4 Pure power law Pure power law 31 Lognormal Lognormal
5 Pure power law Pure power law 32 Lognormal Lognormal
6 Pure power law Pure power law 33 Lognormal Lognormal
7 Pure power law Pure power law 34 Lognormal Lognormal
8 Pure power law Pure power law 35 Lognormal Lognormal
9 Pure power law Pure power law 36 Lognormal Lognormal
10 Pure power law Pure power law 37 Lognormal Lognormal
11 Pure power law Pure power law 38 Lognormal Lognormal
12 Pure power law Pure power law 39 Lognormal Lognormal
13 Pure power law Pure power law 40 Lognormal Lognormal
14 Pure power law Pure power law 41 Exponential Exponential
15 Pure power law Pure power law 42 Exponential Exponential
16 Pure power law Pure power law 43 Exponential Exponential
17 Pure power law Pure power law 44 Exponential Exponential
18 Pure power law Pure power law 45 Exponential Exponential
19 Pure power law Pure power law 46 Exponential Exponential
20 Pure power law Pure power law 47 Exponential Exponential
21 Lognormal Lognormal 48 Exponential Exponential
22 Lognormal Lognormal 49 Exponential Exponential
23 Lognormal Lognormal 50 Exponential Exponential
24 Lognormal Lognormal 51 Exponential Exponential
25 Lognormal Lognormal 52 Exponential Exponential
26 Lognormal Lognormal 53 Exponential Exponential
27 Lognormal Lognormal 54 Exponential Exponential

(Appendices continue)
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Table Al (continued)
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Distribution identified

Distribution identified

ID True distribution as dominant ID True distribution as dominant
55 Exponential Exponential 98 Normal Normal
56 Exponential Exponential 99 Normal Normal
57 Exponential Exponential 100 Normal Normal
58 Exponential Exponential 101 Poisson Poisson
59 Exponential Exponential 102 Poisson Undetermined™®
60 Exponential Exponential 103 Poisson Poisson
61 Power law w/ cutoff Power law w/ cutoff 104 Poisson Poisson
62 Power law w/ cutoff Power law w/ cutoff 105 Poisson Normal
63 Power law w/ cutoff Power law w/ cutoff 106 Poisson Poisson
64 Power law w/ cutoff Power law w/ cutoff 107 Poisson Poisson
65 Power law w/ cutoff Power law w/ cutoff 108 Poisson Normal
66 Power law w/ cutoff Power law w/ cutoff 109 Poisson Normal
67 Power law w/ cutoff Power law w/ cutoff 110 Poisson Normal
68 Power law w/ cutoff Pure power law 111 Poisson Poisson
69 Power law w/ cutoff Power law w/ cutoff 112 Poisson Poisson
70 Power law w/ cutoff Power law w/ cutoff 113 Poisson Poisson
71 Power law w/ cutoff Power law w/ cutoff 114 Poisson Poisson
72 Power law w/ cutoff Power law w/ cutoff 115 Poisson Normal
73 Power law w/ cutoff Power law w/ cutoff 116 Poisson Normal
74 Power law w/ cutoff Power law w/ cutoff 117 Poisson Poisson
75 Power law w/ cutoff Power law w/ cutoff 118 Poisson Normal
76 Power law w/ cutoff Power law w/ cutoff 119 Poisson Poisson
77 Power law w/ cutoff Power law w/ cutoff 120 Poisson Poisson
78 Power law w/ cutoff Power law w/ cutoff 121 Weibull Weibull
79 Power law w/ cutoff Power law w/ cutoff 122 Weibull Weibull
80 Power law w/ cutoff Power law w/ cutoff 123 Weibull Weibull
81 Normal Normal 124 Weibull Weibull
82 Normal Normal 125 Weibull Weibull
83 Normal Normal 126 Weibull Weibull
84 Normal Normal 127 Weibull Weibull
85 Normal Normal 128 Weibull Weibull
86 Normal Normal 129 Weibull Weibull
87 Normal Normal 130 Weibull Weibull
88 Normal Normal 131 Weibull Weibull
89 Normal Normal 132 Weibull Weibull
90 Normal Normal 133 Weibull Weibull
91 Normal Normal 134 Weibull Weibull
92 Normal Normal 135 Weibull Weibull
93 Normal Normal 136 Weibull Weibull
94 Normal Normal 137 Weibull Weibull
95 Normal Normal 138 Weibull Weibull
96 Normal Normal 139 Weibull Weibull
97 Normal Normal 140 Weibull Weibull
Note. Superscripts represent the remaining distributions when the results were undetermined: a = Poisson; b = Weibull; Dpit = distribution pitting

methodological approach for identifying the likely dominant distribution, as described in the Method section.

correctly identifying the pure power law distribution as the dominant
distribution in 1 instance. Among the 20 true Poisson distributions, we
correctly identified the dominant distribution in 12 instances, incorrectly
identified the normal distribution as the dominant distribution in 7 in-
stances, and encountered an undetermined finding in 1 instance (i.e.,
‘Weibull and Poisson remained).

In total, out of the 140 simulated distributions of discrete data,
our procedures correctly identified the dominant distribution in
131 instances (i.e., 93.6% accurate). On the other hand, our pro-
cedures led to 8 instances of Type 1 error (i.e., 1 instance of

incorrectly identifying the pure power law distribution as the
dominant distribution and 7 instances of incorrectly identifying the
normal distribution as the dominant distribution) as well as 9
instances of Type 2 error (i.e., 1 instance of incorrectly identifying
the pure power law distribution as the dominant distribution, 7
instances of incorrectly identifying the normal distribution as the
dominant distribution, and 1 instance of an undetermined finding).
In other words, results based on the simulated discrete data showed
Type 1 and 2 error rates of 5.7% (= 8/140) and 6.4% (= 9/140),
respectively.
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True Distribution identified Distribution identified

1D distribution as dominant 1D True distribution as dominant
1 Pure power law Pure power law 61 Power law w/ cutoff Power law w/ cutoff
2 Pure power law Power law w/ cutoff 62 Power law w/ cutoff Power law w/ cutoff
3 Pure power law Power law w/ cutoff 63 Power law w/ cutoff Power law w/ cutoff
4 Pure power law Power law w/ cutoff 64 Power law w/ cutoff Power law w/ cutoff
5 Pure power law Power law w/ cutoff 65 Power law w/ cutoff Power law w/ cutoff
6 Pure power law Power law w/ cutoff 66 Power law w/ cutoff Power law w/ cutoff
7 Pure power law Power law w/ cutoff 67 Power law w/ cutoff Power law w/ cutoff
8 Pure power law Power law w/ cutoff 68 Power law w/ cutoff Power law w/ cutoff
9 Pure power law Power law w/ cutoff 69 Power law w/ cutoff Power law w/ cutoff

10 Pure power law Power law w/ cutoff 70 Power law w/ cutoff Power law w/ cutoff

11 Pure power law Power law w/ cutoff 71 Power law w/ cutoff Power law w/ cutoff

12 Pure power law Power law w/ cutoff 72 Power law w/ cutoff Power law w/ cutoff

13 Pure power law Power law w/ cutoff 73 Power law w/ cutoff Power law w/ cutoff

14 Pure power law Power law w/ cutoff 74 Power law w/ cutoff Power law w/ cutoff

15 Pure power law Power law w/ cutoff 75 Power law w/ cutoff Power law w/ cutoff

16 Pure power law Power law w/ cutoff 76 Power law w/ cutoff Power law w/ cutoff

17 Pure power law Power law w/ cutoff 77 Power law w/ cutoff Power law w/ cutoff

18 Pure power law Power law w/ cutoff 78 Power law w/ cutoff Power law w/ cutoff

19 Pure power law Power law w/ cutoff 79 Power law w/ cutoff Power law w/ cutoff

20 Pure power law Power law w/ cutoff 80 Power law w/ cutoff Power law w/ cutoff

21 Lognormal Lognormal 81 Normal Normal

22 Lognormal Lognormal 82 Normal Lognormal

23 Lognormal Lognormal 83 Normal Normal

24 Lognormal Lognormal 84 Normal Normal

25 Lognormal Lognormal 85 Normal Normal

26 Lognormal Lognormal 86 Normal Normal

27 Lognormal Lognormal 87 Normal Normal

28 Lognormal Lognormal 88 Normal Normal

29 Lognormal Lognormal 89 Normal Lognormal

30 Lognormal Lognormal 90 Normal Normal

31 Lognormal Lognormal 91 Normal Normal

32 Lognormal Lognormal 92 Normal Normal

33 Lognormal Lognormal 93 Normal Normal

34 Lognormal Lognormal 94 Normal Normal

35 Lognormal Lognormal 95 Normal Normal

36 Lognormal Lognormal 96 Normal Normal

37 Lognormal Lognormal 97 Normal Normal

38 Lognormal Lognormal 98 Normal Normal

39 Lognormal Lognormal 99 Normal Power law w/ cutoff

40 Lognormal Lognormal 100 Normal Normal

41 Exponential Power law w/ cutoff 101 Weibull Weibull

42 Exponential Power law w/ cutoff 102 Weibull Weibull

43 Exponential Power law w/ cutoff 103 Weibull Weibull

44 Exponential Power law w/ cutoff 104 Weibull Weibull

45 Exponential Power law w/ cutoff 105 Weibull Weibull

46 Exponential Exponential 106 Weibull Weibull

47 Exponential Exponential 107 Weibull Weibull

48 Exponential Exponential 108 Weibull Weibull

49 Exponential Exponential 109 Weibull Weibull

50 Exponential Exponential 110 Weibull Weibull

51 Exponential Power law w/ cutoff 111 Weibull Weibull

52 Exponential Power law w/ cutoff 112 Weibull Weibull

53 Exponential Power law w/ cutoff 113 Weibull Weibull

54 Exponential Exponential 114 Weibull Weibull

55 Exponential Exponential 115 Weibull Weibull

56 Exponential Power law w/ cutoff 116 Weibull Weibull

57 Exponential Power law w/ cutoff 117 Weibull Weibull

58 Exponential Power law w/ cutoff 118 Weibull Weibull

59 Exponential Exponential 119 Weibull Weibull

60 Exponential Exponential 120 Weibull Weibull

Note. Our analyses on the simulated distributions of continuous data did not result in any instance of undetermined finding. Dpit = distribution pitting
methodological approach for identifying the likely dominant distribution, as described in the Method section.
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Regarding the continuous data, our methodological procedures
led to correctly identifying the dominant distribution 100% of the
time for the pure power law, lognormal, power law with an
exponential cutoff, and Weibull distributions. Among the 20 true
exponential distributions, we correctly identified the dominant
distribution in 9 instances, while incorrectly identifying the power
law with an exponential cutoff as the dominant distribution in 11
instances. Among the 20 true normal distributions, we correctly
identified the dominant distribution in 17 instances, incorrectly
identified the lognormal distribution as the dominant distribution
in 2 instances, and incorrectly identified the power law with an
exponential cutoff as the dominant distribution in 1 instance. There
were no instances of undetermined findings (‘“undetermined” re-
fers to samples where multiple distributions remained even after
implementing all three decision rules).

In total, out of the 120 simulated distributions of continuous
data, our procedures correctly identified the dominant distribution
in 106 instances (i.e., 88.3% accurate). On the other hand, our
procedures led to 14 instances of Type 1 or 2 error (i.e., 12
instances of incorrectly identifying the power law with an expo-
nential cutoff as the dominant distribution and 2 instances of
incorrectly identifying the lognormal distribution as the dominant
distribution). That is, results based on the simulated continuous
data showed a Type 1 or 2 error rate of 11.7%. Across both
discrete and continuous data, our procedures correctly identified

JOO, AGUINIS, AND BRADLEY

the dominant distribution 91.2% of the time (= [131 + 106]/260),
while Type 1 and 2 error rates were 8.5% (= [8 + 14]/260) and
8.8% (= [9 + 14]/260), respectively.

Results indicated that accurate decisions were overwhelmingly
more frequent compared to false positive and false negative deci-
sions. Our methodological procedures are even more accurate
when results are derived based on how well our procedures iden-
tify the correct distribution category. Out of the 140 simulated
distributions of discrete data, our procedures correctly identified
the dominant distribution category in 139 instances (i.e., 99.3%
accurate). Further, our procedures only led to 1 instance of Type 1
or 2 error (i.e., 1 instance of incorrectly identifying the pure power
law distribution as the dominant distribution category). Out of the
120 simulated distributions of continuous data, our procedures
correctly identified the dominant distribution category in 117
instances (i.e., 97.5% accurate). Moreover, our procedures only
led to 3 instances of Type 1 or 2 error (i.e., 2 instances of
incorrectly identifying the lognormal distribution as the domi-
nant distribution category and 1 instance of incorrectly identi-
fying exponential tail distributions as the dominant distribution
category). In short, across both discrete and continuous data,
our procedures correctly identified the dominant distribution
category 98.5% of the time (= [139 + 117]/260), while the
Type 1 or 2 error rate was only 1.5% (= [1 + 3]/260).

Appendix B

Follow-Up Study to Investigate the Necessity of the Third Decision Rule

Overview and Method

The purpose of the follow-up study was to examine whether
using the third decision rule for identifying the likely dominant
distribution improves the accuracy of conclusions. We used the
same 140 distributions of discrete data and also 120 distributions
of continuous data simulated in Appendix A (Simulation Study to
Investigate the Accuracy of Distribution Pitting and Decision
Rules). However, unlike the study described in Appendix A, this
follow-up study only applied the first two decision rules to check
the extent to which the absence of the third decision rule reduces
the accuracy of results.

Results and Discussion

A summary of results is in Table B1 for discrete data and Table
B2 for continuous data. Regarding the discrete data, using the first
two decision rules while not the third decision rule led to
correctly identifying the dominant distribution 100% of the

time for the lognormal and Weibull distributions. However,
among the 20 true distributions of the pure power law, we
correctly identified the dominant distribution in 1 instance.
Among the 20 true exponential distributions, we correctly iden-
tified the dominant distribution in 8 instances. Among the 20
true distributions of the power law with an exponential cutoff,
we correctly identified the dominant distribution in 6 instances.
Among the 20 true normal distributions, we correctly identified
the dominant distribution in O instance. Among the 20 true
Poisson distributions, we correctly identified the dominant dis-
tribution in 12 instances. In total, out of the 140 simulated
distributions of discrete data, using the first two decision rules
while not the third decision rule only led to correctly identifying
the dominant distribution in 67 instances (i.e., 47.9% accurate).
This is in stark contrast to the results in Appendix A, where we
used all three decision rules and correctly identified the domi-
nant distribution in 131 instances out of the 140 simulated
distributions of discrete data (i.e., 93.6% accurate).
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Distribution Identified as Dominant per Simulated Discrete Distribution Using Dpit’s Decision Rules #1 and #2 and Not Using
Decision Rule #3

True Distribution identified Distribution identified
D distribution as dominant D True distribution as dominant
1 Pure power law Undetermined™® 59 Exponential Exponential
2 Pure power law Undetermined®®f 60 Exponential Exponential
3 Pure power law Undetermined™™" 61 Power law w/ cutoff Undetermined™®#
4 Pure power law Undetermined®®f 62 Power law w/ cutoff Undetermined®®
5 Pure power law Undetermined™™" 63 Power law w/ cutoff Undetermined™®#
6 Pure power law Undetermined™® 64 Power law w/ cutoff Power law w/ cutoff
7 Pure power law Undetermined™® 65 Power law w/ cutoff Undetermined™®#
8 Pure power law Undetermined™" 66 Power law w/ cutoff Power law w/ cutoff
9 Pure power law Undetermined™™" 67 Power law w/ cutoff Undetermined™®#
10 Pure power law Undetermined™* 68 Power law w/ cutoff Undetermined™®#
11 Pure power law Undetermined™™" 69 Power law w/ cutoff Undetermined™®#
12 Pure power law Pure power law 70 Power law w/ cutoff Undetermined™<¢
13 Pure power law Undetermined™™" 71 Power law w/ cutoff Undetermined™®#
14 Pure power law Undetermined™* 72 Power law w/ cutoff Power law w/ cutoff
15 Pure power law Undetermined™™" 73 Power law w/ cutoff Undetermined™®#
16 Pure power law Undetermined™ " 74 Power law w/ cutoff Power law w/ cutoff
17 Pure power law Undetermined™® 75 Power law w/ cutoff Undetermined™?
18 Pure power law Undetermined™ " 76 Power law w/ cutoff Undetermined™#
19 Pure power law Undetermined™® 77 Power law w/ cutoff Undetermined™®#
20 Pure power law Undetermined™* 78 Power law w/ cutoff Power law w/ cutoff
21 Lognormal Lognormal 79 Power law w/ cutoff Power law w/ cutoff
22 Lognormal Lognormal 80 Power law w/ cutoff Undetermined®#
23 Lognormal Lognormal 81 Normal Undetermined™®
24 Lognormal Lognormal 82 Normal Undetermined™®
25 Lognormal Lognormal 83 Normal Undetermined™®
26 Lognormal Lognormal 84 Normal Undetermined™®
27 Lognormal Lognormal 85 Normal Undetermined™®
28 Lognormal Lognormal 86 Normal Undetermined™®
29 Lognormal Lognormal 87 Normal Undetermined™®
30 Lognormal Lognormal 88 Normal Undetermined®*®
31 Lognormal Lognormal 89 Normal Undetermined™®
32 Lognormal Lognormal 90 Normal Undetermined™®
33 Lognormal Lognormal 91 Normal Undetermined™®
34 Lognormal Lognormal 92 Normal Undetermined®*®
35 Lognormal Lognormal 93 Normal Undetermined™®
36 Lognormal Lognormal 94 Normal Undetermined®*®
37 Lognormal Lognormal 95 Normal Undetermined™®
38 Lognormal Lognormal 96 Normal Undetermined®*®
39 Lognormal Lognormal 97 Normal Undetermined™®
40 Lognormal Lognormal 98 Normal Undetermined®*®
41 Exponential Undetermined®*© 99 Normal Undetermined™®
42 Exponential Undetermined®*© 100 Normal Undetermined™®
43 Exponential Exponential 101 Poisson Poisson
44 Exponential Undetermined®*© 102 Poisson Undetermined"®
45 Exponential Undetermined®© 103 Poisson Poisson
46 Exponential Exponential 104 Poisson Poisson
47 Exponential Undetermined®*© 105 Poisson Undetermined®"
48 Exponential Undetermined®® 106 Poisson Poisson
49 Exponential Undetermined®*© 107 Poisson Poisson
50 Exponential Exponential 108 Poisson Undetermined®"¢
51 Exponential Exponential 109 Poisson Undetermined®"#
52 Exponential Undetermined®*© 110 Poisson Undetermined®*
53 Exponential Undetermined®*© 111 Poisson Poisson
54 Exponential Undetermined®® 112 Poisson Poisson
55 Exponential Undetermined®© 113 Poisson Poisson
56 Exponential Undetermined®© 114 Poisson Poisson
57 Exponential Exponential 115 Poisson Undetermined®"#
58 Exponential Exponential 116 Poisson Undetermined®"#
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Table B1 (continued)

True Distribution identified Distribution identified
ID distribution as dominant ID True distribution as dominant
117 Poisson Poisson 129 Weibull Weibull
118 Poisson Undetermined®"¢ 130 Weibull Weibull
119 Poisson Poisson 131 Weibull Weibull
120 Poisson Poisson 132 Weibull Weibull
121 Weibull Weibull 133 Weibull Weibull
122 Weibull Weibull 134 Weibull Weibull
123 Weibull Weibull 135 Weibull Weibull
124 Weibull Weibull 136 Weibull Weibull
125 Weibull Weibull 137 Weibull Weibull
126 Weibull Weibull 138 Weibull Weibull
127 Weibull Weibull 139 Weibull Weibull
128 Weibull Weibull 140 Weibull Weibull

Note. Superscripts represent the remaining distributions when the results were undetermined: a = pure power law; b = lognormal; ¢ = exponential; d =
power law w/ cutoff; e = normal; f = Poisson; g = Weibull. Dpit = distribution pitting methodological approach for identifying the likely dominant

distribution, as described in the Method section.

Regarding the continuous data, using the first two decision rules
while not the third decision rule led to correctly identifying the
dominant distribution 100% of the time for the pure power law,
lognormal, power law with an exponential cutoff, and Weibull
distributions. However, among the 20 true exponential distribu-
tions, we correctly identified the dominant distribution in 1 in-

Table B2

stance. Among the 20 true normal distributions, we correctly
identified the dominant distribution in 3 instances. In total, out of
the 120 simulated distributions of continuous data, using the first
two decision rules while not the third decision rule only led to
correctly identifying the dominant distribution in 84 instances (i.e.,
70% accurate). This is in contrast to the results in Appendix A,

Distribution Identified as Dominant per Simulated Continuous Distribution Using Dpit’s Decision Rules #1 and #2 and Not Using

Decision Rule #3

Distribution identified

Distribution identified

1D True distribution as dominant ID True distribution as dominant
1 Pure power law Pure power law 26 Lognormal Lognormal
2 Pure power law Pure power law 27 Lognormal Lognormal
3 Pure power law Pure power law 28 Lognormal Lognormal
4 Pure power law Pure power law 29 Lognormal Lognormal
5 Pure power law Pure power law 30 Lognormal Lognormal
6 Pure power law Pure power law 31 Lognormal Lognormal
7 Pure power law Pure power law 32 Lognormal Lognormal
8 Pure power law Pure power law 33 Lognormal Lognormal
9 Pure power law Pure power law 34 Lognormal Lognormal
10 Pure power law Pure power law 35 Lognormal Lognormal
11 Pure power law Pure power law 36 Lognormal Lognormal
12 Pure power law Pure power law 37 Lognormal Lognormal
13 Pure power law Pure power law 38 Lognormal Lognormal
14 Pure power law Pure power law 39 Lognormal Lognormal
15 Pure power law Pure power law 40 Lognormal Lognormal
16 Pure power law Pure power law 41 Exponential Power law w/ cutoff
17 Pure power law Pure power law 42 Exponential Power law w/ cutoff
18 Pure power law Pure power law 43 Exponential Power law w/ cutoff
19 Pure power law Pure power law 44 Exponential Power law w/ cutoff
20 Pure power law Pure power law 45 Exponential Power law w/ cutoff
21 Lognormal Lognormal 46 Exponential Undetermined®*
22 Lognormal Lognormal 47 Exponential Undetermined®"
23 Lognormal Lognormal 48 Exponential Exponential
24 Lognormal Lognormal 49 Exponential Undetermined®"
25 Lognormal Lognormal 50 Exponential Undetermined®*
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Distribution identified

Distribution identified

ID True distribution as dominant ID True distribution as dominant
51 Exponential Power law w/ cutoff 86 Normal Undetermined™®
52 Exponential Power law w/ cutoff 87 Normal Undetermined®®
53 Exponential Power law w/ cutoff 88 Normal Undetermined™®
54 Exponential Undetermined®" 89 Normal Lognormal

55 Exponential Undetermined®" 90 Normal Normal

56 Exponential Power law w/ cutoff 91 Normal Undetermined®®
57 Exponential Power law w/ cutoff 92 Normal Undetermined™®
58 Exponential Power law w/ cutoff 93 Normal Undetermined®®
59 Exponential Undetermined*" 94 Normal Undetermined™®
60 Exponential Undetermined®" 95 Normal Undetermined®®
61 Power law w/ cutoff Power law w/ cutoff 96 Normal Undetermined®®
62 Power law w/ cutoff Power law w/ cutoff 97 Normal Undetermined®™
63 Power law w/ cutoff Power law w/ cutoff 98 Normal Undetermined®®
64 Power law w/ cutoff Power law w/ cutoff 99 Normal Undetermined®
65 Power law w/ cutoff Power law w/ cutoff 100 Normal Undetermined®®
66 Power law w/ cutoff Power law w/ cutoff 101 Weibull Weibull

67 Power law w/ cutoff Power law w/ cutoff 102 Weibull Weibull

68 Power law w/ cutoff Power law w/ cutoff 103 Weibull Weibull

69 Power law w/ cutoff Power law w/ cutoff 104 Weibull Weibull

70 Power law w/ cutoff Power law w/ cutoff 105 Weibull Weibull

71 Power law w/ cutoff Power law w/ cutoff 106 Weibull Weibull

72 Power law w/ cutoff Power law w/ cutoff 107 Weibull Weibull

73 Power law w/ cutoff Power law w/ cutoff 108 Weibull Weibull

74 Power law w/ cutoff Power law w/ cutoff 109 Weibull Weibull

75 Power law w/ cutoff Power law w/ cutoff 110 Weibull Weibull

76 Power law w/ cutoff Power law w/ cutoff 111 Weibull Weibull

77 Power law w/ cutoff Power law w/ cutoff 112 Weibull Weibull

78 Power law w/ cutoff Power law w/ cutoff 113 Weibull Weibull

79 Power law w/ cutoff Power law w/ cutoff 114 Weibull Weibull

80 Power law w/ cutoff Power law w/ cutoff 115 Weibull Weibull

81 Normal Undetermined®® 116 Weibull Weibull

82 Normal Lognormal 117 Weibull Weibull

83 Normal Undetermined®® 118 Weibull Weibull

84 Normal Normal 119 Weibull Weibull

85 Normal Normal 120 Weibull Weibull

Note. Superscripts represent the remaining distributions when the results were undetermined: a = pure power law; b = lognormal; ¢ = exponential; d =
power law w/ cutoff; e = normal; f = Weibull; Dpit = distribution pitting methodological approach for identifying the likely dominant distribution, as

described in the Method section.

where we used all three decision rules and correctly identified the
dominant distribution in 106 instances out of 120 simulated dis-
tributions of continuous data (i.e., 88.3% accurate).

Overall, results indicated that using decision rules #1 and #2
while not using the third decision rule reduces the accuracy of
conclusions regarding the likely dominant distribution. Across
both discrete and continuous data, using the first two decision rules
while not the third decision rule led to correctly identifying the

dominant distribution 58.1% of the time (= [67 + 84]/260). This
accuracy rate is much lower than the accuracy rate of 91.2%,
which we obtained in the study described in Appendix A by using
all three decision rules.
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