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Monte Carlo simulation procedures were used to assess the power
of moderated multiple regression (MMR) to detect the effects of a
dichotomous moderator variable under conditions of: (1) between-
group differences in within-group relationships between two variables
(i.e., &verbar;&rho;XY(1) -&rho;XY(2) &verbar;= .20, .40, .60); (2) different combined sample
sizes for the two groups (N1 + N2 = NT = 30, 60, 90, 180, 300); and
(3) differing proportions of cases (P-i) in the two groups (i.e., P1 =
.10, .30, .50). Results showed that, consistent with our a priori
predictions, the power of MMR increased as: (1) total sample size (NT)
increased; (2) the difference between within-group correlation
coefficients increased; and (3) the difference between the proportion
of cases in each group decreased. Moreover, the simulation showed
that these three variables had interactive effects on power. The major
implication of our findings is that in cases where tests of moderating
effects are conducted with MMR and the proportion of cases in each
group differs greatly, inferences of no moderating effect may be
erroneous: Such inferences may be the result of low statistical power
rather than the absence of a moderating effect.

Researchers in industrial and organizational psychology, organizational
behavior, human resources management, and a host of other disciplines are
often interested in testing for the existence of moderating effects, i.e., interactive
effects of two variables (cf. Stone, 1988; Zedeck,1971). In recent years, attempts
to detect such effects have relied increasingly on moderated multiple regression
(MMR; Cohen & Cohen, 1983; Stone, 1988; Zedeck, 1971). MMR has been
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used to detect moderating effects for moderator variables that are measured
on both continuous (e.g., age) and dichotomous (e.g., gender) scales. In

personnel psychology, for instance, researchers have used MMR to determine
if pre-employment selection tests differentially predict job performance for two
groups of applicants (e.g., male, female; white, non-white). Unfortunately, tests
of moderating effects for dichotomous moderator variables may not always
provide valid information about the existence of such effects. One reason for
the failure to find effects in studies that attempt to show differences in predictor-
criterion relationships (e.g., correlation coefficients, regression slopes) for two
groups (e.g., male, female) is that the relative sizes of the samples of the two
groups (N1, N2), and thus the proportions (pi) of individuals in the groups (pi,
p2) may differ markedly from one another. As a consequence of differences
between pi and p2 there will be limits on the magnitudes of relationships (e.g.,
zero-order correlation coefficients) between the moderator (Z) and (1) X, the
other predictor variable (e.g., test scores); and (2) Y, the continuously measured
criterion variable (e.g., job performance) (cf. Cohen & Cohen, 1983; Nunnally,
1978).

The effect of p i - P2 differences on relationships can be deduced from the
following formula for the point-biserial correlation coefficient (cf. Cohen &

Cohen, 1983; Nunnally, 1978):

where: M1 = mean score of Group I on the continuous variable
M2 = mean score of Group 2 on the continuous variable
pi = proportion of cases in Group 1
p2 = proportion of cases in Group 2
a = standard deviation of the continuous variable

As Equation 1 illustrates, assuming a fixed difference between the means
of Group 1 and Group 2 on a continuous variable and a constant standard
deviation for this variable, the greater the discrepancy between pi and p2, the
lower will be the value of rpb (Cohen & Cohen, 1983, pp. 66-67; Nunnally, 1978,
pp. 145-146). In the limiting case, when either pi or p2 equals 0, rpb will equal
zero.

Moreover, to the extent that pi - p2 differences affect estimates of the
magnitudes of zero-order correlations between (a) a moderator variable (Z) and
another continuous predictor (X), and (b) a moderator variable and a criterion
variable (1), the results of MMR analyses involving the dichotomous predictor
variable will be affected. The reason for this is that there are upper limits on
the magnitudes of squared semi-partial correlations involving dichotomous
moderator variables (cf. Cohen & Cohen, 1983, pp. 89-90). The important
implication of the foregoing is that such limits will influence the ability of MMR
to detect moderating effects: The greater the pi - p2 difference, the lower will
be the power of an MMR-based test of a moderating effect for Z. Stated
differently, the greater the pi - p2 discrepancy, the greater will be the risk of
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the researcher committing a Type II statistical error in the search for moderating
effects (i.e., falsely concluding that there is no moderating effect).

A recent study by Hattrup and Schmitt (1990) provides an illustration
of this problem. In the study, MMR was used to test for differential predictor-
criterion relationships in groups formed on the basis of subject gender (male
vs. female) and race (white vs. non-white). Their MMR analyses used data
from samples that differed substantially from one another in terms of the
relative sizes of each subgroup, leading to substantial pi - p2 differences.
More specifically, in tests for race-based moderating effects the respective
proportions of whites and nonwhites were .831 and .169, and in tests for
gender-based moderating effects the respective proportions of males and
females were .899 and .101. Their MMR analyses failed to show moderating
effects for either race or gender, leading them to conclude that neither race
nor gender were moderators of the predictor-criterion relationships
considered by their study.

Another recent study that provides an illustration of the low statistical
power problem in tests of the effects of dichotomous moderator variables is
Cortina, Doherty, Schmitt, Kaufman, and Smith (1992). In the study MMR
was used to test for the moderating effects of race on relationships between
personality predictors and several criterion variables (e.g., performance ratings).
Minority group members comprised only 31 % of the sample. Results of 12
separate MMR analyses showed that there was no moderating effect for race,
leading the researchers to conclude that the tests were fair to both majority and
minority groups.

As a consequence of statistical power problems, we believe that the
conclusions of Hattrup and Schmitt (1990), Cortina et al. (1992), and a host
of others may not be valid: More specifically, we believe that the inference of
no moderating effect that stems from the use of MMR with data sets for which
there is a large difference between pi and p2 levels may be a function of Type
II error. At present, however, there is no direct evidence on the extent to which
differences in pi andp2 levels influence the power of MMR to detect moderating
effects. Therefore, we conducted a Monte Carlo simulation to assess the power
of MMR to detect the effects of a dichotomous moderator variable under
conditions of differing pi and p2 levels. Three independent variables were
manipulated in our simulation: (1) the overall size of the sample (NT = ~Vi +
N2) upon which the MMR analysis was based; (2) the proportions of individuals
in two groups for which differential prediction was tested (pl, p2); and (3) the
zero-order correlations between the continuous predictor (X) and the criterion
(Y) in the population from which cases were sampled.

Method

Simulation Design and Procedures
Monte Carlo simulation procedures were used to determine the power of

MMR to detect the moderating effects of a dichotomous moderator variable,
Z, on the relationship between two other variables, X and Y. A QuickBASIC
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4.5 program was used for the simulation. Prior to using the program to conduct
the simulation, we conducted a number of checks to insure its accuracy.

The simulation design was a 4 (p~y<t) = population correlation between
variables X and Y in Group 1) X 4 (PXY(2) = population correlation between
variables X and Y in Group 2) X 5 (NT = total sample size) X 3 (Ni / NT =

proportion of cases in Group 1): (1) The Group 1 (Gt) correlation between the
continuous predictor (X) and the criterion (Y) in the population (pxYc,~) was
set at values of .2, .4, .6, and .8; (2) The Group 2 (G2) correlation between the
continuous predictor (X) and the criterion ( Y) in the population (pXY(2) was
set at levels of .2, .4, .6, and .8; (3) The total sample size (NT) was set at levels
of 30, 60, 90, 180, and 300; and (4) The proportions of individuals in the two
groups (pi and p2) for which differential prediction was tested were varied by
setting p 1 at .1, . .3, and .5.

For each of the 240 resulting cells of the design 2,000 samples were drawn
and for each such sample MMR was used to test for the moderating effect of
Z on the relationship between X and Y. The existence of such an effect was
assessed by testing the statistical significance of the regression weight for Q3 in
the following model:

where: X. Z is a product term that carries information about the interaction
between X and Z. These MMR analyses and the associated statistical tests
yielded information about the power of MMR to detect true (population)
moderating effects for samples that differed in terms of the three manipulated
variables.

Results

Tables 1-5 show results of the simulation. More specifically, the tables show
the percentage rejection rates of the null hypothesis that Q3 = 0. Rejection of
this hypothesis signals the existence of a moderating effect of Z on the

relationship between X and Y.
The results presented in Tables 1-5 show that, consistent with our a priori

predictions, the power of MMR to detect true, between-group differences in
within-group correlation coefficients increased as the proportion of cases in each
of the groups (pi and p2) approached .5. In many cases power dropped
substantially as the pi - p2 difference increased. For example, for NT = 90,
and a .60 difference between the population correlation coefficients, power
reached .925 for pi = .50, but dropped to .341 for pi = .10. The magnitude
of these substantial changes in power is illustrated in Figure 1 which shows

rejection rates of the null hypotheses of Q3 = 0 for NT = 90 and differing levels
of the other two manipulated variables.

The results in Tables 1-5 also show that our other a priori expectations
were confirmed by the findings of the simulation. More specifically, the results
showed that power increased as a function of both: (1) the magnitude of the
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Note: pxyii) a = zero-order correlation between Y and X for Group I and PXY(2) = zero-order correlation
between Y and X for Group 2.

Note: pxy<i> = zero-order correlation between Y and X for Group I and PXY(2) = zero-order correlation
between Y and X for Group 2.
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Note: pxy<i> = zero-order correlation between Y and X for Group I and PXY(2) = zero-order correlation
between Y and X for Group 2.

Note: pxy<i> = zero-order correlation between Y and X for Group I and PXY(2) = zero-order correlation
between Y and X for Group 2.
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Note: PXY(1) = zero-order correlation between Y and X for Group I and PXY(2) = zero-order correlation
between Y and X for Group 2.

difference between the population correlations (I PXY(L) - PXY(2) ); and (2) the
overall size of the sample (NT). These effects can be clearly seen in Figure 1.
The same figure also illustrates how the manipulated variables interacted with
one another in influencing power.

In order to better determine the nature of the main and interactive effects
of the manipulated variables, we conducted a MMR analysis in which we
regressed statistical power estimates derived from our simulation (i.e., the
proportion of times that the null hypothesis of Q3 = 0 was correctly rejected)
on variables representing the main and interactive effects of the manipulated
parameters (i.e., differences in proportions, overall sample size, and the absolute
difference between the Fisher’s Z equivalents of the population correlation
coefficients). Because the dependent variable was statistical power, data from
only the 180 cells of the design for which the manipulated moderating effect
was not equal to zero (i.e., PXY(L) 54 /~XY(2)) were used in this MMR analysis.
At step one of the analysis, the main effects of the three predictors (manipulated
variables) were entered into the equation. At step two, the three two-way
interaction terms were entered. Finally, at step three, the three-way interaction
term was entered. Because linearity was assumed, the actual values of the
variables rather than dummy codes were used in the MMR analysis.

Table 6 shows the results of this analysis. As can be seen in the table, both
the two-and three-way interaction terms were statistically significant. The mean
rejection rates (i.e., power levels) showed the following pattern: (1) In a number
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Figure 1. Effects of differences in (a) correlation coefficients for two groups and (b)
proportions of cases in the groups on the power of moderated multiple regression to
detect moderating effects.

of conditions power was relatively low and increased only slightly as p, (i.e.,
the proportion of cases in Group 1 or Group 2) increased from .10 to .50 .
Examples of this are the condition for which NT = 30 and pxr~~~ - PXY(2) I
= .40, and the condition for which N = 90 and pxrcl~ - PXY(2) _ .20; (2)
In several other conditions power was relatively low and increased moderately
as p, rose from .10 to .30, but showed a lesser degree of increase as p; shifted
from .30 to .50. Two examples of this are the condition for which NT = 30
and pxY~l> - PXY(2) _ .60, and the condition for which NT = 180 and pxY~l~
-PXY(2) I = .20. (c) In yet other cases power was moderately high for p, = . .10,
increased markedly as p, rose to .3, and reached very high levels at p; = .50.
Two conditions show this pattern (i.e., that for which NT = 90 and pxYu> -
PXY(2) I = .60, and that for which N7= 180 and pxY~~> - 

PXY(2) I = .40; and
(4) In still other conditions power was very high at p, _ . l and increased only
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Table 6. Regression of Empirically Derived Power Levels on Variables
Manipulated in the Simulation

Notes: * p < .0 1

**p<.001 I
b = unstandardized regression coefficient
B = standardized regression coefficient
NT = total sample size
pi = proportion of cases in Group I
Alp = absolute difference between Fisher’s Z equivalents of pxr~,> and pxr(2)
bo = .007088 for the raw score regression equation

slightly or not at all as p, rose to levels of .3 and .5. A condition that serves
as an example of this is that for which NT = 300 and pxYm - PXY(2) ~ == .60.
Overall, the results in Tables 1 to 5 show that, in general, high levels of power
(i.e., power > .90) are only assured when three conditions are simultaneously
satisfied, i.e., sample size is large (i.e., > 180), the difference between correlation
coefficients is also large (i.e., ~ pxrm - PXY(2) > .60), and the smallest of the
p, levels is .30 or greater.

It deserves noting that a pl - p2 difference leads to a relatively low drop
in power when overall sample size is relatively low (e.g., NT = 30). However,
the decrease in power is substantial when overall sample size is relatively high
(e.g., NT = 180 or 300). Thus, while a relatively large NT may do much to
enhance the odds of rejecting the null hypothesis that the squared multiple
correlation coefficient in the population ( ’1’2 ) = 0, the power to detect
interaction effects can suffer dramatically if there are marked pl - p2 differences.

Discussion

Overall, our findings show that the power of MMR to detect moderating
effects when the moderator variable is dichotomous is very much a function
of the relative sample sizes of the groups for which the strength of predictor-
criterion relationships is being compared. Specifically, as the difference between
the proportions pi and p2 increases, statistical power decreases.

These findings suggest that the failure of researchers to find moderating
effects (e.g., differential prediction) with MMR may be attributable to low
statistical power. One example of this is the earlier cited study by Hattrup and
Schmitt (1990). Their regression analyses were based upon an overall sample
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size of about 300. In the case of the test for race-based moderating effects,
approximately 10 percent of the subjects were members of the minority group.
Assuming the existence of a true difference between the validity coefficients for
the minority and white subgroups as large as .20 (e.g., pxY = .20 in one group
and .40 in the other) for the subjects studied by Hattrup and Schmitt, the power
of MMR to detect this effect would only be. .199 (cf. Table 5). Assuming a lower
effect size, power would be even lower. Low statistical power would also seem
to be a problem in the study by Cortina et al. (1992) in which numerous MMR
analyses failed to show evidence of race-based moderating effects. With a sample
size of approximately 300 and assuming a true difference in validity coefficients
of .20 (e.g., pxy = .20 in one group and .40 in the other) the power to detect
race-based moderating effects would only be about .38.

Our MMR analysis in which power was the dependent variable showed
that not only is power affected by a pl - p2 difference, but that the effect of
the pi - p2 difference on power varies across levels of sample size and the
magnitude of the absolute difference between the correlation coefficients (i.e.,
I pxry> - PXY(2) ). For example, if one of the p, levels is .10, power will be
below .10 when NT = 30 and pAry<i) &dquo; PXY(2) _ .20, and will rise to only
.48 when NT = 90 and pxr~ n - PXY(2) 1 &dquo; .60. The important implication of
this is that when the proportions of cases in two groups differ markedly from
one another, there will generally be very low power to detect moderating effects
for the levels of sample sizes and correlation differences that are typically found
in organizational research. In view of this, under conditions where statistical
power is low, researchers should be quite cautious about concluding that there
is no moderating effect.

Tables 1-5 show that the rejection rates varied as a function of whether
the smallest group had the largest correlation coefficient. For example, Table
3 shows that when pxY~,> and PXY(2) were .2 and .6, respectively, the rejection
rate for pi = .10 was .263. However, for the same proportion value (i.e., pi
- .10), the rejection rate for PXY(l) = .6 and PXY(2) _ .2 was .170. This difference
in power for constant levels of NT and pxY~~> - PXY(2) is consistent with the
findings of a simulation by Alexander, DeShon, and Govern (1993). Their study
assessed the relative power of: (1) the F-test used to test for moderating effects
in MMR; and (2) the X2 test of the equality of correlation coefficients in two
groups. In their simulation different sample sizes and effect sizes (i.e., p values
within each of two groups) were paired. The x2 test was used as the benchmark
against which the F test was compared. Results of their simulation showed that
when the smallest group had the smallest correlation coefficient (p), the F-test
was overly liberal. However, when the smallest group had the largest correlation
coefficient, the F test for moderating effects was overly conservative. This
difference in power was attributable to the fact that the standard error of the
estimate for the regression equation was greatest when the largest sample size
was paired with the smallest correlation coefficient.

It deserves noting that our simulation showed that rejection rates of the
null hypothesis of a3 = 0 decreased as pi decreased, irrespective of whether
thepi value was accompanied by the largest or smallest correlation coefficient.
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The important implication of this is that the ability to find moderating effects
using MMR will suffer when sample sizes differ across two groups, resulting
in different p, levels.

On the basis of the findings of Alexander et al. (1993) it seems clear that,
in some instances, the x2 test should be used in testing for moderating effects
since it will be more powerful than the F test used in MMR. More specifically,
the x2 test is preferable to the F-test except when the group with the largest
sample size has the smallest error variance. Note, however, that this conclusion
only applies in instances when the moderator variable is a natural dichotomy.
It does not apply when the X2 test is used to test for the moderating effect of
a variable that was initially continuous but was later converted (i.e., trans-
formed) to a dichotomous variable. Stated differently, power will be greater
when MMR is used to test for the moderating effects of a moderator variable
that is measured on a continuous scale than it will be for the x2 test of the
difference between correlation coefficients for a moderator variable that is

artificially dichotomous (cf. Stone-Romero & Anderson, in press).
If MMR is used to test for moderating effects, the results in Table 6 should

provide researchers with a convenient method for estimating statistical power.
Researchers need only use the b-weights in Table 6 in conjunction with their
estimates of total sample size, the magnitudes of within-group correlation
coefficients, and the proportion of cases in one of the two groups. One possible
limitation of this procedure, however, is that our results are based on a
simulation that had limited range on all of the predictors. For example, our
simulation limited pxru> - PXY(2) I to.60. Given this, estimates of power derived
from the use of our equation should be conservative. This inference is based
upon the results of a simulation by Aguinis (1993) that showed that the power
to detect moderating effects is attenuated when predictor variables have
restricted range.

In summary, our results suggest that researchers should be cautious in their
interpretation of null findings when using MMR to test for moderating effects
in cases where they are dealing with: (1) a dichotomous moderator variable;
and (2) differing proportions of cases in two groups. In such instances, low
statistical power (i.e., Type II error) may very well serve as a viable explanation
for the failure of MMR to detect moderating effects.
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