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We propose and illustrate a three-step procedure for testing
moderator variable hypotheses meta-analytically. The procedure is
based on Hedges and Olkin's (1985) meta-analytic approach, yet it
incorporates study-level corrections for methodological and statistical
artifacts that are typically advocated and used within psychometric
approaches to meta-analysis (e.g., Hunter & Schmidt, 1990). The three-
step procedure entails: (a) correcting study-level effect size estimates
for across-study variability due to methodological and statistical arti-
Jacts, (b) testing the overall homogeneity of study-level effect size esti-
mates after the artifactual sources of variance have been removed, and
(c) testing the effects of hypothesized moderator variables.

Quantitative reviews of a research domain (i.e., meta-analysis, MA) are consensu-
ally accepted in numerous management subdisciplines, as well as other social
sciences (e.g., Aguinis, Pierce, & Quigley, 1993, 1995; Cooper & Hedges, 1994;
Cotton & Tuttle, 1986; Dobbins & Platz, 1986; Johnson, 1989). A critical advan-
tage of MA compared to a narrative literature review strategy is that it permits the
formal testing of hypotheses regarding the effects of moderator variables. Vari-
able Z is defined as a moderator of the relationship between variables X and Y
when the nature of this relationship is contingent upon values or levels of Z
(Aguinis, 1995; Aguinis, Bommer, & Pierce, 1996; Aguinis & Pierce, 1998;
Zedeck, 1971). Similar to primary researchers (e.g., Aguinis, Pierce, & Stone-
Romero, 1994; Aguinis & Stone-Romero, 1997; Stone-Romero, Alliger, &
Aguinis, 1994), meta-analysts often test theoretically-derived moderator variable
hypotheses (Cooper & Lemke, 1991; Mullen, Salas, & Miller, 1991). For exam-
vle, organizational behavior meta-analysts have long been interested in investigat-
g the moderating effect of pressure for production (Z) on the relationship
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between job satisfaction (X) and job performance (¥) (Iaffaldano & Muchinsky,
1985; Petty, McGee, & Cavender, 1984).

The present article addresses the methodological issue of testing moderator
variable hypothesis meta-analytically. More specifically, we propose and illus-
trate a three-step procedure that is based on Hedges and Olkin’s (1985) meta-
analytic approach, yet it incorporates study-level corrections for methodological
and statistical artifacts that are typically advocated and used within psychometric
approaches to meta-analysis (e.g., Hunter & Schmidt, 1990). Surprisingly, MA
developers and users alike do not seem to recognize that study-level effect sizes
can be corrected for methodological and statistical artifacts within the Hedges-
Olkin framework.

In the sections that follow, we (a) briefly summarize the Hedges-Olkin
approach to meta-analysis and the advantages of using Q0 homogeneity statistics,
(b) briefly summarize the rationale and advantages of implementing study-level
corrections for methodological and statistical artifacts in meta-analysis, (c¢)
discuss Hedges and Olkin’s consideration of corrections for methodological and
statistical artifacts, (d) propose a three-step procedure to implement study-level
corrections within the Hedges-Olkin approach, and (e) provide an illustration of
implementing the proposed three-step procedure.

Hedges-Olkin (HO) Meta-Analytic Approach

Hedges and Olkin (Hedges, 1982a, 1982b; Hedges & Olkin, 1985) advocate
an approach to MA that investigates (a) the magnitude of the relationship between
two variables, (b) the variability of this relationship across studies, and (c) the
(moderator) variables that determine or predict such variability. The magnitude of
the relationship between two variables is investigated by obtaining an unbiased
effect size estimate (d) from each study and then computing a mean d based on the
study-level estimates.

The degree of variability of ds across studies is assessed with the homogene-
ity statistic Q. A statistically significant Q indicates that the study-level ds do not
estimate a common population effect size and, therefore, the subsequent search
for moderating effects is warranted. It has been argued, however, that follow-up
statistical tests for moderators can be conducted when Q is statistically significant
or large (Hedges & Olkin, 1985; Johnson & Turco, 1992). The justification for
this argument is the existence of theoretical predictions regarding the effects of
hypothesized moderators.

Two sets of statistical procedures are used to test for moderating effects
depending upon whether the hypothesized moderator is (a) categorical (e.g., type
of job: blue collar vs. white collar; Iaffaldano & Muchinsky, 1985) or (b) continu-
ous (e.g., age; Oliver & Hyde, 1993). In tests for hypothesized categorical moder-
ating effects (Hedges, 1982a; Hedges & Olkin, 1985), each study is assigned a
numerical value based upon the moderator (e.g., gender, 1 = female, 2 = male)
and subgrouped according to this coding scheme. The homogeneity of effect sizes
within each subgroup is examined next by computing a within-subgroup homoge-
neity statistic Qy,, and the difference between or among mean within-subgroup
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TESTING MODERATOR VARIABLES META-ANALYTICALLY 579

effect sizes is assessed by computing a between-subgroup homogeneity statistic
QOp. The presence of the predicted moderator is indicated by a “complete” meta-
analytic model (Johnson & Turco, 1992). That is, nonsignificant Qy s (suggesting
that all the studies within each subgroup estimate a common population effect
size) and a significant Qp (suggesting a difference between the mean effect size
estimates across subgroups) indicate the presence of a statistically significant
categorical moderator variable. The concurrent presence of a significant Qg and
significant Qs suggests that additional moderators might exist.

In tests for hypothesized continuous moderating effects, weighted least
squares (WLS) regression is used (Hedges, 1982b; Hedges & Olkin, 1985). The
use of a WLS model prevents information loss due to falsely polychotomizing a
truly continuous variable (Cohen, 1983). When using WLS regression, the effect
size estimate (d) is regressed onto a continuous moderator Z (i.e., d = ZP + g,
where d represents a vector of d values, Z represents a vector of values for the
hypothesized moderator Z, 3 represents a vector of regression coefficients, and €
represents a vector of residuals). The Qp and Qp statistics are then computed,
where Qp tests the null hypothesis that the vector of regression coefficients for the
moderator equals zero (H,: B = 0) and Q. assesses the overall regression model fit
(H,: € = 0). A statistically significant Q indicates variable Z is a significant
moderator and a nonsignificant O suggests favorable model fit.

Support for the Use of Q Homogeneity Statistics

Recent Monte Carlo investigations have concluded that moderator variable
hypotheses examined using the Q statistics described above are tested without
noticeable deviations from nominal Type I error rates and with adequate statistical
power. For example, a Monte Carlo study indicated that (a) Type I error rates
ranged from .07 to .10, and (b) power rates ranged from .63 to .91, across several
values for sample size and number of studies included in a meta-analysis (Sagie &
Koslowsky, 1993). Results of another Monte Carlo study, specifically addressing
small sample situations, also supported the accuracy of Q statistics: (a) Type I
error rates ranged from .041 to .045, and (b) power rates were acceptable (e.g.,
when a meta-analysis was based on five studies, power rates ranged from .709 to
1.000) (Alliger, 1995).

In sum, the HO approach allows meta-analysts to test the statistical signifi-
cance of overall study-level effect size variability across studies and formally test
for the presence of hypothesized moderator variables. Furthermore, recent Monte
Carlo investigations have concluded that hypotheses examined via Q statistics
seem to be tested without noticeable deviations from nominal Type I error rates
and with adequate statistical power. Finally, an additional advantage of the HO
approach is its ease of testing for both categorical and continuous moderating
effects.

Implementing Study-Level Corrections in Meta-Analysis

Proponents of psychometric approaches to meta-analysis extend arguments
from measurement theory to MA and contend that a substantial portion of the
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variability observed in an X-Y relationship across studies is the result of artifactual
sources of variance (Hunter & Schmidt, 1990; Raju, Burke, Normand, &
Langlois, 1991; Schmidt, 1992; Schmidt, Law, Hunter, Rothstein, Pearlman, &
McDaniel, 1993). Stated differently, across-study variability in effect size esti-
mates may be due to (a) methodological and statistical artifacts, and/or (b) moder-
ating effects. Consequently, in order to better estimate an X-Y relationship in the
population, researchers should (a) attempt to control the impact of artifacts by
implementing sound research designs, and (b) correct for artifactual across-study
Varlablhty by subtracting it from the total observed variance in study-level effect
size estimates. The goal of implementing the corrections is not to eliminate all
kinds of variability, but rather only the across-study variability that is caused by
methodological and statistical artifacts (e.g., sampling error, measurement error in
the dependent variable, range restriction; Aguinis & Whitehead, 1997).

Researchers who champion psychometric approaches to meta-analysis
contend that quantitative reviews of nonexperimental (typically based on rs as the
estimate of effect size) and experimental (typically based on ds as the estimate of
effect size) research suffer from the same problem: across-study effect size vari-
ability is not only the result of true differences caused by moderators, but to meth-
odological and statistical artifacts. Thus, unless the artifactual variability is
removed, across-study variability may be attributed to “false” moderating effects
by committing a Type I statistical error (see Hunter & Schmidt, 1990: 23-29 for
an illustration).

Some researchers, however, have pointed to controversial issues regarding
the implementation of corrections for artifacts. First, James and his colleagues
(James, Demaree, & Mulaik, 1986; James, Demaree, Mulaik, & Ladd, 1992) have
suggested that some artifacts may be correlated with substantive situational
moderators (e.g., organizational climate). Thus, James and colleagues argued that
by correcting for methodological artifacts, a meta-analyst may also be correcting
for (i.e., partialling out) a substantive moderator variable. In such situations,
researchers would incorrectly conclude that the magnitude of a situational moder-
ating effect is zero (or near zero).

A second controversial issue regarding the corrections was presented by
Murphy (1993), who demonstrated that although the implementation of correc-
tions typically leads to smaller across-study variability, the reverse can also
happen (see Johnson, Mullen, & Salas, 1995: 100, Table 5 for an illustration).
There are several situations that may lead to a distribution of corrected effect sizes
that has a larger variance than a distribution of uncorrected effect sizes (see
Murphy, 1993, for a detailed analysis of this issue). However, the conclusion
reached by Murphy should not necessarily be interpreted as being inconsistent
with psychometric approaches to meta-analysis: across-study variability in effect
sizes is not undesirable per se, it is the variability caused by artifacts that meta-
analysts should attempt to minimize.

A third controversial issue regarding corrections for artifacts is that the appli-
cation of these corrections may lead to an effect size with a negative variance. In
other words, the across-study variance accounted for by methodological and
statistical artifacts may be larger than 100% (e.g., Rothstein, Schmidt, Erwin,
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Owens, & Sparks, 1990: 179, Table 5). This phenomenon may be interpreted as
evidence that (a) the methodological and statistical corrections are intercorrelated,
or (b) there exists a statistical anomaly. Both of these interpretations would
suggest a weakness of meta-analytic procedures incorporating corrections for arti-
facts. However, several researchers have argued that meta-analytic results in
which artifacts explain more than 100% of the across-study variance is a common
and expected phenomenon. If the across-study variance is entirely artifactual in
nature, then 100% of the across-study observed variance is accounted for by arti-
facts. In such situations, values for artifactual variance are expected to be larger
than 100% approximately 50% of the time because of second-order sampling
error (Burke, 1996; Callender & Osburn, 1988; Rothstein et al., 1990).

Support for the Implementation of Corrections

In spite of the aforementioned three controversial issues, corrections for
methodological and statistical artifacts such as measurement error and range
restriction are rooted in a long tradition in social science methodology indicating
that corrected effect sizes provide better population estimates than observed (i.e.,
uncorrected) effect sizes (Spearman, 1904; Thorndike, 1949: 104-105). First,
regarding measurement error, it is well known that this artifact reduces the
observed relationship between two variables as compared to the relationship
between the two constructs underlying these measures. The goal of meta-analysis
is to better understand relationships between or among constructs, and not merely
relationships between or among fallible measures of such constructs (Schmidt &
Hunter, 1996). If effect sizes are not corrected for measurement error, the meta-
analyzed effect sizes have a systematic downward bias. In addition, differential
levels of measurement error across studies artificially increase the across-study
variance in effect size estimates. This variability, caused by differential measure-
ment error and not by theoretically meaningful moderator variables, can lead
researchers to falsely conclude that effect sizes vary across studies and that a
moderator exists. Hunter and Schmidt (1990: 117-125) provided a detailed discus-
sion and review of the advantages of implementing the measurement error correc-
tion in meta-analytic investigations (see also Muchinsky, 1996, for a review on
the measurement error correction).

There is also a long tradition in the social sciences measurement literature
regarding the need for correcting for range restriction. As early as 1903, Pearson
argued that effect size estimates computed from censored or range-restricted data
underestimate population effects. Meta-analysts often encounter study-level effect
sizes computed from scores that comprise a smaller range than that of population
scores (e.g., in personnel selection research). The effects of range restriction are
twofold: (a) range restriction produces a downward bias in study-level effect
sizes, and (b) differential levels of range restriction across studies increases the
across-study variability in effect size estimates. Consequently, researchers are
advised to implement range restriction corrections (Thorndike, 1949: 169-176;
see also Ree, Carretta, Earles, & Albert, 1994). Hunter and Schmidt (1990: 125-
133) described the range restriction correction in detail and provided illustrative
examples.
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In sum, a clear advantage of performing the corrections is that they control
artifactual variability in a set of study-level population effect size estimates. More
precisely, artifacts that spuriously increase across-study variability can be
controlled for through statistical corrections. Consequently, the probability of
committing a Type I error by attributing artifactual across-study variance to
“false” moderating effects is maintained at the nominal level.

Hedges and Olkin’s Consideration of Study-Level Corrections for
Methodological and Statistical Artifacts

The HO meta-analytic approach allows for the correction of some types of
methodological artifacts (i.e., sampling error via the use of Q statistics and
measurement error in the dependent variable). More precisely, on page 135 of
Hedges and Olkin (1985), Equation 39 shows that study-level ds can be individu-
ally corrected for measurement error in the dependent variable. Also, Equation 40
(% 136) shows how to compute a weighted estimate of the corrected mean d (i.e.,
d"), and Equation 43 (p. 137) shows how to compute the overall QR homogeneity
statistic. However, Hedges and Olkin’s (1985) equations allow only for the
correction of ds based on measurement error. There are additional artifacts, such
as range restriction and dichotomization of continuous variables, that are perva-
sive in research in several management fields such as human resources and orga-
nizational behavior.

Despite the fact that Hedges and Olkin (1985) suggested that study-level
effect sizes can be individually corrected for measurement error, and that the HO
meta-analytic framework is not opposed to the use of corrections, meta-analysts
using the HO approach are seemingly unaware of this possibility. We reviewed all
the meta-analyses published in Psychological Bulletin and Journal of Applied
Psychology between January 1991 and January 1996. Thirty of the 55 articles in
which meta-analysis was used implemented the HO approach. However, in none
of these articles did the authors implement corrections for measurement error.
Thus, it seems that although the HO approach allows for corrections based on
measurement error in the dependent variable, users of the HO approach typically
choose not to implement this correction or are unaware of the possibility.

In sum, the HO approach does consider correcting study-level effects sizes
for artifacts. However, in addition to considering sampling error via the use of Q
homogeneity statistics, this approach allows only for the correction of measure-
ment error. Finally, although the HO framework is not averse to effect size correc-
tions, meta-analysts using this approach typically do not implement them.

Incorporating Study-Level Corrections within the Hedges-Olkin
Meta-Analytic Framework: A Three-Step Procedure

The HO approach provides Q statistics for estimating the effects of modera-
tor variables, but provides equations for Qs based only on the measurement error
correction. Also, users of the HO approach usually do not implement corrections
for methodological and statistical artifacts. We advance a three-step procedure in
order to (a) correct study-level effect size estimates for across-study variability

JOURNAL OF MANAGEMENT, VOL. 24, NO. 5, 1998

Copyright © 1999, A TTgms reserved.”



TESTING MODERATOR VARIABLES META-ANALYTICALLY 583

that is due to methodological and statistical artifacts, (b) test the overall homoge-
neity of study-level effect size estimates after artifactual sources of variance have
been removed, and (c) test the effects of hypothesized moderator variables. Each
of these three steps is described next.

Step One

The across-study variance that is due to artifactual sources is removed from
the total observed across-study variability. Artifactual variability can be removed
by individually correcting each effect size estimate for artifactual sources of vari-
ance (Hunter & Schmidt, 1990: Chapter 3). Information regarding artifact correc-
tion values can be (a) obtained from the primary study in question, (b) estimated
from previous research, (c) computed as a mean correction factor from the subset
of studies in which this information is reported, or (d) computed based on regres-
sion or maximum likelihood-based techniques. Roth (1994) provided a detailed
discussion and recommendations regarding techniques to overcome the problem
of missing data that are readily applicable to the estimation of missing artifact
correction factors.

The first step in our proposed procedure consists of individually correcting
each effect size estimate for artifacts that have been identified in the meta-analytic
literature (Hunter & Schmidt, 1990). As an illustration of correcting a correlation
coefficient for just one of these artifacts, a study-level effect size estimate r can be
corrected for range restriction, and the unrestricted population correlation p can
be obtained by dividing r / a, where:

u

4= — ()
Jat 1)+ 1

r is the observed effect size estimate, and u is the ratio of restricted (sample) to
unrestricted (population) standard deviations (Hunter & Schmidt, 1990: 48).

If, instead, a meta-analyst investigates an experimental or dichotomous
effect and thus cumulates ds, the artifactual variability across studies can be quan-
tified by directly correcting the ds. Alternatively, ds can be easily converted to
Pearson’s product-moment correlation coefficients (rs). Thus, the study-level
corrections are applied to rs. Some meta-analysis developers (Hunter & Schmidt,
1990; Rosenthal, 1991) recommend the transformation of ds to rs for ease of
interpretation and because additional multivariate techniques such as partial
correlation analysis, path analysis, and multiple regression can be more easily
utilized if needed.

Converting ds to rs requires that ds first be converted to point-biserial corre-
lation coefficients (r,,$), and that r,,s then be converted to rs because r,,s under-
estimate rs when subgroup sample sizes are unequal. Equation 2 (Wolf, 1986: 35)
can be used for transforming ds to r,,;s:

d
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Glass and Stanley (1970: 171) have suggested the following formula to convert
TppS O 7S:

Tpb N
- uN ’ (3)
where n| is the sample size in subgroup 1, n, is the sample size in subgroup 2,
N =n| + n,, and u is the ordinate (i.e., height) of the unit normal distribution at the
point above which lies 100 - (rn;/N)% of the area under the curve.
As the last part of this step, each corrected study-level r needs to be
converted back to the original 4 metric using Equation 4 (Wolf, 1986: 35):

2r
o @

At this point, all study-level effect size estimates (rs or ds) are now expressed in
the d metric and have been individually corrected for methodological and statisti-
cal artifacts (e.g., range restriction, measurement error, dichotomization of contin-
uous variables). It is these corrected study-level ds that are used in Step Two.

d =

Step Two

The corrected study-level ds are tested for homogeneity using a modified Q
statistic (the original equation is presented by Hedges & Olkin, 1985: 123). Q
approximates a chi-square distribution with k-1 degrees of freedom, where k is the
number of studies:

(d,-d,)
Q=3—F—>, (5)
&°(d)

where d; is the corrected (for artifacts) and adjusted (for sample size bias by multi-
plying the estimate by 1 - [3 / {4N - 9}]; Hedges & Olkin, 1985: 81) study-level
effect size estimate for study i, d, is the overall corrected and adjusted mean
effect size estimate, and 6 ( d;) is the estimated corrected effect size variance for
d;. Adjusted, or unbiased (Johnson, 1989), effect sizes are used because they are
more precise estimates of the population effect size. Furthermore, adjusted esti-
mates minimize the across-stud 3/ effect size vanance (Hedges & Olkin, 1985).

Note that Equatlon 5’s 6’“(d;) differs from & ( d;), the uncorrected variance
typically used in meta-analyses adopting the HO approach. The uncorrected
sampling error variance is (cf. Hedges & Olkin, 1985: 86):

(6)
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where n; is the sample size in the experimental group and 7, is the sample size in
the control group. (When a d is transformed from a Pearson r and, therefore, there
is only one sample with size N, it is assumed that N = n| + ny and n; = ny;
Johnson, 1989).

Once the effect size estimates are corrected for artifacts, their sampling error
variances change. To continue with the example set forth in Step One, let u,,...,
u be the range restriction correction factors (Hunter & Schmidt, 1990: 254; see
also Equation 1) for each of k studies. The corrected sampling error variances are
(Hedges, personal communication, February 14, 1995):

As2 2,2 ~s2 2.2 arl 2 .2
6 =u6,, O5=u6,, .., Op=uC. )

If needed, Equation 7 can be expanded to correct sampling error variances
for additional artifacts such as measurement error in the dependent variable
(Hedges, personal communication, February 14, 1995):

~r2 2 2,2 2 2 2,2 ~s2 2 2,2
6 = uw6{, G5 =uw,6,, .., O, =uwo,, (8)
where w is the measurement error correction factor (w =1/ [ryy]” 2,

Once the ds are corrected in Step One, and Equation 7 or 8 is used to
compute the corrected sampling error variances, all the usual HO meta-analytic
procedures using homogeneity statistics and regression models are valid (Hedges,
personal communication, February 14, 1995). The significance and magnitude of
Q computed using Equation 5 is evaluated in order to determine whether the over-
all mean d estimates a common population effect size. A significant Q suggests
the presence of unexplained effect size variability and, therefore, the testing of
theoretically relevant moderator variables is warranted. Moreover, if theory
predicts a particular moderating effect, it has been suggested that a statistically

nonsignificant yet large Q can be followed up by moderator variable testing
(Hedges & Olkin, 1985; Johnson & Turco, 1992) as described next in Step Three.

Step Three

HO'’s fixed effects models approach is implemented to test for the presence
of hypothesized moderator variables using the corrected and adjusted study-level
ds and the corrected sampling error variances. As described next, categorical or
continuous models are fitted to the effect size data depending upon the nature of
the hypothesized moderator(s).

For tests of categorical models, Equations 9 and 11 show modified formulae
for computing Qp and Qy; (the original equations are presented by Hedges &
Olkin, 1985: 154-155). Qp approximates a chi-square distribution with p-1
degrees of freedom, where p is the number of classes or levels of the hypothesized
moderator:

(di+_d++)2
Op=2X—F%— ©
6 (d;,)
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where d;, is the corrected and adjusted mean effect size estimate for the ith class
of the hypothes1zed moderator, 4, , is the ad]usted grand mean of all k corrected
study-level effect size estimates, and & "%(d;, ) is the corrected effect size variance
for d;, . Note that this corrected within-class variance differs from the uncorrected
Variance (provided by Hedges & Olkin, 1985: 152) because it cumulates corrected
within-class study-level variances:

L 1 !
6°(d;,) = (22—] (10)
6 (d;)

Qw: approximates a chi-square distribution with m-1 degrees of freedom,
where m is the number of effect sizes within a given class or level of the hypothe-
sized moderator:

2
(dy=d)
Ow; = ¥ —H——, (11)
& %(dy)

where d;; is the corrected study-level effect size estimate for the ith class of the
hypothes1zed moderator and the jth study, d;, is the corrected and adjusted mean
effect size estimate for the ith class of the hypothesmed moderator, and & "( dy)is
the corrected effect size variance for d;;. Equation 11 is used for each class, level,
or category of the hypothesized moderator

For tests of continuous models, Equations 12 and 13 show the formulae for
Qg and Qp (cf. Hedges & Olkin, 1985: 169-172). Qg approximates a chi-square
distribution with / degrees of freedom, where [ is the number of regression coeffi-
cients in the vector f3:

Op = BZB B, (12)

where ,B is the transpose of the modified generahzed least squares estimator of
the vector Band £ p 1s an estimate of the covariance matrix

QOp approximates a chi-square distribution with k- p - 1 degrees of freedom,
where k is the number of studies and p is the number of predictor variables:

|
Qp=df;d-0p , (13)

where d’ is the transpose of a vector of corrected study-level 4 values, $, is an
estimate of the diagonal covariance matrix X ,, and Qg is the value obtained using
Equation 12.

An Hlustration of Implementing the Three-Step Procedure

To illustrate how the proposed three-step meta-analytic procedure can be
easily implemented, we arbitrarily selected a data set from Hunter and Schmidt
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Table 1. An Illustration of the Proposed Three-Step Meta-Analytic Procedure
Using Data from Hunter and Schmidt (1990: 24, Table 1.1)

Study N r Sex a p d d (drd,)? &%d) &%) (dyd;,)

1) 20 46 F .65 71 203 195 0529 .29478 .10612 .0036
2) 72 32 M .62 52 120 1.19 2809  .06540 .02354 .0064
3) 29 .10 M .60 17 34 33 1.9321 13978 .05032 .8836
4) 30 45 M .64 70 196 191 0361 .19387 .06979 .4096
(5) 71 .18 F .61 .30 .62 .61 1.2321 .05900 .02124 1.9600
(6) 62 45 F .64 70 196 193 0441 .09469 03409 .0064
7 25 .56 F .67 83 3.03 293 1.4641 33150 .11934 .8464
8) 46 41 M .64 .65 1.69 1.66 0036 11696 .04211 .1521
(&) 22 55 F .67 82 290 279 1.1449 35865 .12911 .6084
(10) 69 44 F .64 69 189 1.87 0225 .08322 .02996 .0196
Notes: N = total sample size

r = Pearson’s product-moment correlation coefficient between organizational commitment and

job satisfaction

F = female

M = male

a = range restriction correction factor computed using Equation 1

P =r/ a, corrected (for range restriction) correlation coefficient

d = transformation of p to d using Equation 4

d; = corrected (for artifacts) and adjusted d=d - (1 - [3/ (4N -9}])

d, = grand mean = mean of all d;s = 1.72 (r = .65) in this example

(di-d +)2 = squared deviations between each study-level effect size and the grand mean

&4 d;) = uncorrected sampling error variance computed using Equation 6

& d;) = corrected sampling error variance computed using Equation 7

(dy- d; +)2 = squared deviations between each study-level effect size and its group mean

(1990: 24, Table 1.1, Studies 1-10). Table 1 shows a hypothetical set of 10 studies
that independently assessed the relationship between organizational commitment
and job satisfaction. For each of the ten studies, information is available regarding
(a) total sample size (N), (b) Pearson correlation coefficient (r) between organiza-
tional commitment and job satisfaction, and (c) sex of the study participants (male
vs. female). Assume that the goal of this research is to test a theory-based predic-
tion that sex is a moderator of the organizational commitment-job satisfaction
link, such that this relationship is stronger for women than for men. Next, we turn
to the implementation of our three-step meta-analytic procedure. These calcula-
tions can be performed using a spreadsheet computer program or even a pocket
calculator if the number of studies is manageable.

Step One

The first step is to correct the study-level effect size estimates for artifactual
sources of variance. To be consistent with the example provided in the conceptual
description of the three steps above, we corrected the study-level rs for range
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restriction so that an unrestricted population correlation p could be obtained for
each study (p = r/ a, where a is defined in Equation 1). For the sake of simplic-
ity, assume that u (ratio of restricted to unrestricted standard deviations) is .60 for
all ten studies.” Table 1 shows the values for each study’s a, computed using
Equation 1, and the values for each study’s f, the corrected (for range restriction)
correlation coefficient. Next, we transformed each corrected correlation coeffi-
cient into a d using Equation 4. Note that the conversion to the d metric is neces-
sary so as to compute the Q statistics in Step Two and Step Three. Nevertheless,
to be consistent with the original metric and to ease the interpretation of results, ds
can be converted back to rs at any point during the procedures. At the end of Step
One, the effect size estimates are expressed in the d metric and have been individ-
ually corrected for methodological and statistical artifacts. (We illustrate the
procedures correcting only for range restriction, but the corrections can be
extended to include additional artifacts such as measurement error, dichotomiza-
tion of continuous variables, and so forth).

Step Two

As suggested by the HO approach, the corrected ds are tested for overall
homogeneity using the modified Q statistic shown in Equation 5. This step
requires that each corrected d first be converted to a d; by multiplying each d by 1
-[3/(@N-9] Gee.,d;=d- {1-[3/(@N -9)]}). As expected, greater differences
between d (corrected and unadjusted) and d; (corrected and adjusted) are observed
for studies having smaller sample sizes.

Following the computation of d;s, we obtained the corrected adjusted mean
d., which is simply the mean of all the ds (i.e., the corrected and adjusted ds; d,
= 1.72, or converted to r metric, using Eq 2, r = .65). Next, we computed the
numerator for Equation 5; name 2/ the squared deviations between each study-
level d; and the mean d,, ([d; - 4,]°). We then obtained values for the denominator
in Equatlon 5; namely the corrected sampling error variances (&°(d;)). We
obtained these values by first computing the uncorrected variances using Equatlon
6 for each d; and then using Equatlon 7 to convert each uncorrected variance
G6(d;)toa corrected variance & (d;). In this particular example, the ongmal effect
size estimates were rs, and therefore there is only one sample with size N. Thus,
consistent with the HO approach, in Equation 6 we assumed that N = n; + n, and
ny = ny (Johnson, 1989; Johnson & Eagly, in press).

Finally, the Q statistic is computed as indicated in Equation 5, Q(9) = 132.15,
p < .01. Thus, the conclusion from this analysis is that the corrected effect size
estimates for the organizational commitment-job satisfaction relationship are
heterogeneous across the 10 studies. Thus, we proceed to Step Three where we
test the hypothesis that the across-study variability in the organizational commit-
ment-job satisfaction link can be explained by the moderating effect of sex.

Step Three

Step Three consists of computing the Qg and Qy; statistics using Equations 9
and 11, respectively. All the information needed to compute these statistics is
displayed in Table 1.
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Computation of Qg. We used Equation 9 to compute Qp and, thus, first
obtained a corrected and adjusted mean effect size (d;,) based on the d;s within
each of the two classes of the moderator (i.e., males, females; there are six female
and four male samples). For males d;, = 1.27 (r = .54, cf. Eq. 2) and for females
dy, =2.01 (r = .71, cf. Eq. 2). We then obtained the squared deviations between
the mean effect size in each class and the grand mean of all k corrected study-level
effect size estimates ([d;, - d, +] where d, , = 1.72). This resulted in a squared
deviation of .2025 for males and .0841 for females and provides the information
needed for the numerator in Equation 9.

For the denominator i 1n Equation 9, we computed the corrected effect size
variance for the male (6’ d1+) and female (6 %d,,) classes using Equation 10.
This is easily achieved because each within-class corrected effect size variance
consists of an aggregauon of the variances for the effect size estimates within
each class (6 '*(d; i), which is information obtained during Step One. The variance
for males is 00996 and the variance for females is .00739. Then, given the values
for [d;, - d,,]* and 6"%d;,, Qp(1) = 32.54, p < .OL. Consequently, we conclude
that there is a statistically significant moderating effect of sex on the organiza-
tional commitment-job satisfaction relationship such that the relationship is stron-
ger for females (r = .71) than for males (r = .54).

Computation of Qw,. To compute Q. for each of the two classes, we first
obtained the squared dev1at10ns between the study-level estimates in each class
and the class mean ([ ] ). The individual effect size estimates are displayed
in Table 1 (i.e., d;s withm each class), and the class means were computed above
(for males d;, = 1 27 and for females d,, = 2 01). The information needed for the
denominator is also displayed in Table 1: §* ( d; ) 1s the corrected effect size vari-
ance for the studies included in each class (i.e., 6’ (d Js). Then, all that remains is
to compute Qy; based on [d;; - i - d; +] and 6” (d ;) for each study. For the male
class Qw.(3) = 59.82, p < .01, and for the female class Ow.(5) =80.58, p < .01,

In sum, based on these results, we conclude that there is overall heterogene-
ity across the ten hypothetical studies that examined the relationship between
organizational commitment and job satisfaction. Thus, moderators seem to be
affecting this relationship. Moreover, we determined that there was heterogeneity
between classes, as well as within each class of the hypothesized moderator sex.
These results suggest that (a) there are moderators of the examined organizational
commitment-job satisfaction relationship, (b) sex of the sample is one of these
moderators, and (c) because of the presence of within-class heterogeneity, there
may be other variables, in addition to sex, that are related to the magnitude of the
organizational commitment-job satisfaction relationship.

Summary and Conclusions

As stated by Hall and Rosenthal (1991: 447), “the search for moderator vari-
ables is not only an exciting intellectual enterprise but, indeed,...it is at the very
heart of the scientific enterprise.” Given the advancement in management theory
over the past few decades, together with the increasingly pervasive postulation of
theoretical models including complex moderated relationships, it is not surprising
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that the interest in testing moderating effects meta-analytically has increased
substantially.

The present article favors the implementation of study-level corrections for
methodological and statistical artifacts within the HO meta-analytic approach.
Future Monte Carlo research is needed to ascertain the impact of incorporating
such corrections within the HO approach and, specifically, to investigate the
statistical properties (i.e., empirically-derived Type I error and power rates) of the
resulting modified Q statistics. Nevertheless, there is analytic (e.g., Pearson,
1903) and Monte Carlo (e.g., Alliger, 1995; Sagie & Koslowsky, 1993) empirical
evidence regarding (a) the advantages of implementing corrections of study-level
effect sizes, and (b) the accuracy of Q homogeneity statistics based on uncor-
rected effect sizes. Consequently, we recommend that corrections for artifactual
across-study variability be implemented. We also recommend that the proposed
modified Q statistics, which incorporate corrected sampling error variances, be
computed. Using Q statistics enables researchers to explain across-study effect-
size variability by formally testing moderator variable hypotheses.

Acknowledgment: A previous version of this article was presented at the meet-
ing of the American Psychological Society, Washington, DC, July 1994. Both
authors contributed equally to this research. We thank Larry V. Hedges for his
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Notes

1. Hunter and Schmidt have suggested additional algorithms, which do not have an analogue in the HO approach,
1o generate across-study variance due to assumed differences in artifact values (e.g., measurement error and
range restriction, Hunter & Schmidt, 1990: 158-198). Although these procedures can be used when it is not
possible to obtain or estimate information regarding study-level artifact values, they do not lead to individually
corrected study-level effect sizes. Instead, these algorithms result in an aggregate-level variance-due-to-arti-
fact estimate. Thus, these aggregate-level procedures are not useful in the present context because individually
corrected effect sizes are needed to compute Q statistics as described in Steps Two and Three.

2. By assuming the same degree of range restriction across the ten studies, the across-study variability does not
decrease by implementing the range restriction correction. Moreover, because the magnitude of the corrected
effect sizes does increase, the variability of corrected effect sizes may be larger than the variability of their
uncorrected counterparts (Murphy, 1993). Nevertheless, we chose to use a constant value for range restriction
across studies to ease the interpretation of the computations involved in the illustration.
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