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Homogeneity of within-subgroup error (residual) variance is a necessary statis-
tical assumption for the appropriate use of moderated multiple regression (MMR)
for assessing the effects of categorical moderator variables (e.g., ethnicity, gen-
der). We provide a conceptual review of the homogeneity of error variance
assumption in the context of MMR analyses. First, we clarify issues pertaining to
the violation of the homogeneity of error variance assumption and differentiate it
from the homoscedasticity assumption. Second, we delineate the implications of
violating the homogeneity of error variance assumption for organizational theory
and practice. Finally, we critically review solutions recently proposed to mitigate
the detrimental effects of violating the homogeneity of error variance assumption
on conclusions regarding the effects of categorical moderator variables.

The presence of a moderating or interaction effect indicates that the relationship
between a predictor X and a criterion Y is not homogenous across values of a third
(moderator) variable Z. The estimation of moderating effects is becoming an increas-
" ingly critical methodological issue in several organizational disciplines, including
human resources management, organizational behavior, and industrial/organizational

Authors’ Note: Portions of this article were presented at the meetings of the Rocky Mountain Psycho-
logical Association, Boulder, CO, April 1995, and the Society for Industrial and Organizational Psychology,
San Diego, CA, April 1996. The research reported in this article was facilitated by a Faculty Grant Award
and a Summer Research and Development Stipend to Herman Aguinis from the University of Colorado at
Denver. We thank Richard P. DeShon (Michigan State University), Lawrence R. James (University of
Tennessee, Knoxville), and members of the Behavioral Science Research Group for their valuable comments
on previous drafts. Correspondence and reprint requests should be addressed to Herman Aguinis, College
of Business and Administration, University of Colorado at Denver, Campus Box 165, P.O. Box 173364,
Denver, CO 80217-3364; e-mail: haguinis@castle.cudenver.edu URL: http://www.cudenver.edw/~haguinis
and http://www.montana.edu/wwwpy/cppage.html.

Organizational Research Methods, Vol. 1 No. 3, July 1998 296-314
© 1998 Sage Publications, Inc.

296

from the SAGE Socia Science Collections. All Rights Reserved.



Aguinis, Pierce / CATEGORICAL VARIABLES 297

psychology (Aguinis & Pierce, in press-b; Aguinis & Whitehead, 1997). For example,
in the area of staffing decision making (i.e., personnel selection and placement),
moderating effects of variables such as ethnicity and gender on the relationship
between preemployment test scores and measures of performance suggest that the test
does not predict performance equally well for the subgroups under consideration (e.g.,
minority and nonminority). Consequently, if a moderator such as ethnicity is found,
there is differential prediction or predictive bias, and the preemployment test is
considered to be biased for certain subgroups (Bartlett, Bobko, Mossier, & Hannan,
1978; Cleary, 1968; Society for Industrial and Organizational Psychology [SIOP],
1987).

We offer a conceptual review of an often overlooked yet pervasive issue regarding
the estimation of moderating effects of categorical variables; that is, the violation of
the homogeneity of within-subgroup error variance assumption in the context of
moderated multiple regression analyses. First, however, we (a) briefly review the use
of moderated multiple regression (MMR) to estimate moderating effects of categorical
variables, (b) illustrate the assessment of moderating effects of categorical variables
with the case of differential prediction research, and (c) provide a brief overview of
statistical power problems with MMR to assess moderating effects.

Use of Moderated Multiple Regression to Estimate
Moderating Effects of Categorical Variables

MMR is a consensually accepted statistical technique for estimating moderating
effects of categorical variables such as ethnicity and gender in the organizational
sciences (e.g., management, applied psychology; Cortina, 1993; Sackett & Wilk,
1994). For instance, Russell and Bobko (1992) state that “[a] simple count of the
number of studies examining moderator effects in major applied psychology journals
indicates that moderated regression analysis is the preferred statistical procedure for
detecting interaction effects” (p. 336). MMR consists of forming a least squares
regression equation (Cohen & Cohen, 1983; Saunders, 1956; Zedeck, 1971). Let Y be
a continuous criterion variable (i.e., performance scores), let X be a continuous
predictor variable (i.e., preemployment test scores), and let Z be a categorical predictor
variable hypothesized to be a moderator (e.g., gender dummy coded 1 = males and 2 =
females). Equation 1 shows the sample-based least squares regression that tests the
additive model for predicting Y from X, Z, and the interaction between X and Z (i.e.,
moderating effect of Z) represented by the X x Z product term.

Y=a+bX+bZ+bXxZ, 0

where ll\/is the predicted value for Y, a is the least squares estimate of the intercept of
the surface of best fit, b, is the least squares estimate of the population regression
coefficient for X, b, is the least squares estimate of the population regression coefficient
for Z, and b, is the least squares estimate of the population regression coefficient for
the product term that carries information about the interaction between X and Z (Cohen
& Cohen, 1983). Rejecting the null hypothesis of B, = 0 indicates the presence of a
moderating or interaction effect. Stated differently, rejecting this null hypothesis
indicates that the regression of Y on X is unequal across levels of Z (e.g., minority and
nonminority subgroups, male and female subgroups).
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Moderating Effects of Categorical Variables:
The Case of Differential Prediction

In the area of human resources management, the presence of differential prediction
by ethnicity or gender is ethically and legally problematic. Differential prediction
indicates that the test-criterion relationship is stronger for one ethnic- or gender-based
subgroup than for another. For example, assume there is gender-based differential
prediction such that there is a stronger relationship (i.e., greater by, , value or steeper
slope) for the female subgroup than for the male subgroup (Dunbar & Novick, 1988).
In this case, because selection decisions are typically made considering scores in the
middle and high portions of the X range, using one common regression equation
implies that scores for females will be underpredicted and scores for males will be
overpredicted. This situation, similar to Dunbar and Novick’s actual results regarding
nine clerical specialties in the U.S. Marine Corps, leads to predictions biased in favor
of members of the male subgroup and against members of the female subgroup.

Statistical Power Problems with Moderated
Multiple Regression to Assess Moderating Effects

MMR is regularly used in testing hypotheses regarding moderating effects of
dichotomous variables such as ethnicity (i.e., minority and nonminority subgroups)
and gender (i.e., female and male subgroups) (e.g., Cortina, Doherty, Schmitt, Kauf-
man, & Smith, 1992; Hattrup & Schmitt, 1990; Houston & Novick, 1987; Schmitt,
Hattrup, & Landis, 1993). Despite its popularity, numerous researchers have
expressed the concern that MMR may often lead to erroneous conclusions
(Aguinis & Stone-Romero, 1997; Bobko & Russell, 1990, 1994; Linn, 1983; Linn &
Hastings, 1984; MacCallum & Mar, 1995). For example, many theory-based, sound
hypotheses involving moderated relationships are frequently not supported
(Zedeck, 1971).

In response to the failures to detect hypothesized moderator variables, recent
research has investigated the accuracy of MMR to estimate moderating effects under
various conditions of (a) predictor and criterion variable distributions and operation-
alizations, (b) predictor-moderator intercorrelation (i.e., multicollinearity), and (c) sample
size (Bobko & Russell, 1994; McClelland & Judd, 1993; Stone-Romero, Alliger, &
Aguinis, 1994). Overall, this body of research suggests that MMR-based tests of
moderator variable hypotheses are, for the most part, conducted at very low levels of
statistical power (see Aguinis, 1995, for a review). Stated differently, null findings
regarding moderating effects may often be due to Type II errors (i.e., erroneous
dismissals of population moderating effects). Consequently, because of the concern
that researchers may erroneously fail to reject false null hypotheses regarding moder-
ating effects, some solutions have been advanced in an attempt to prevent researchers
from mistakenly discarding models that encompass moderator variables (Aguinis,
Bommer, & Pierce, 1996; Aguinis & Pierce, in press-a; Aguinis, Pierce, & Stone-
Romero, 1994; Sackett & Wilk, 1994).

An additional factor that influences MMR-based conclusions regarding the opera-
tion of moderator variables is the violation of the homogeneity of within-subgroup
error variance assumption. When this statistical assumption is violated, the estimation
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of moderating effects and the assessment of differential prediction becomes problem-
atic: Researchers may commit a Type I or a Type II statistical error, depending on the
specific sample and population characteristics. Thus, researchers may discover a false
moderator (Type I error) or erroneously dismiss a model including a moderator
variable (Type II error). Committing Type I or Type I statistical errors has consequen-
tial effects for theory building as well as for organizational practices. More specifically,
committing these errors as a consequence of heterogeneity of within-subgroup error
variance implies that decisions regarding the use of selection and placement tests may
be incorrect: Unbiased (i.e., differential prediction-free) tests may be incorrectly
judged as biased (Type I error), and biased (i.e., differential prediction-laden) tests may
be incorrectly judged as unbiased (Type II error).

The issue of comparing error variances across subgroups in the context of moder-
ated regression models is not new. Gulliksen and Wilks (1950) suggested that a test
for differences in standard errors of the estimate (i.e., square root of within-subgroup
error variances across moderator-based subgroups, G,;) should be conducted before
testing for differences in slopes across subgroups (which is at present accomplished
using MMR). Moreover, Gulliksen and Wilks recommended that tests for inequality
of slopes not be conducted in situations involving heterogeneity of standard errors of
the estimate across subgroups (i.e., 0, #0,,), in the case of two subgroups). However,
Gulliksen and Wilks’s 48-year old recommendation does not seem to have had its
intended effect. A possible reason is that, thus far, articles addressing this issue have
had a more technical focus and are perhaps not accessible to most organizational
researchers (e.g., Alexander & DeShon, 1994; Dretzke, Levin, & Serlin, 1982; Gul-
liksen & Wilks, 1950).

The fact that many organizational science scholars are not aware of the homoge-
neity of within-subgroup error variance assumption is illustrated by a review of the
extent to which this assumption is violated in differential prediction research. Based
on a review of articles published or referenced in Journal of Applied Psychology and
Personnel Psychology between 1980 and 1993, and the validity data base published
in the Journal of Business and Psychology in 1992 (Landy, 1992), DeShon and
Alexander (1994b) concluded that 39 MMR tests reported in a total of 20 studies
violated this assumption. Furthermore, in all but one of these 20 studies, the subgroup
with the largest sample size was accompanied by the largest error variance. As
described in a later section of the present article, this pairing of n and error variance
increases the likelihood of committing a Type II error in testing for differential
prediction.

The frequent violation of the homogeneity of within-subgroup error variance
assumption as well as the consequential implications of this violation for theory
building and staffing decision making sparked an increased interest in the conse-
quences of violating this assumption (e.g., Alexander & DeShon, 1994; DeShon &
Alexander, 1994b; Hsu, 1994). However, despite what seems to be an increased
awareness regarding issues surrounding homogeneity of within-subgroup error vari-
ance, this assumption is often confused with the distinct homoscedasticity assumption.
For instance, Stone and Hollenbeck (1989) found differences in residual variances
across two subgroups (i.e., heterogeneity of within-subgroup error variance) and
concluded, instead, that the homoscedasticity assumption had been violated. Also,
some recently proposed solutions to mitigate the effects of heterogeneity of error
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variance (Hsu, 1994) do not seem to be appropriate and may be more detrimental than
beneficial.

Accordingly, the objective of the present article is to provide organizational
researchers with a conceptual review of the homogeneity of within-subgroup error
variance assumption in the context of MMR, which is a consensually accepted
technique for testing hypotheses regarding moderating effects of categorical variables.
The more specific goals of the present article are to (a) clarify the nature of the
homogeneity of within-subgroup error variance assumption and differentiate it from
the homoscedasticity assumption, (b) illustrate practical implications of violating this
assumption in the context of personnel selection and placement decision making in
terms of Type I and Type II statistical errors, and (c) critically discuss solutions recently
proposed to mitigate the detrimental effects of violating this statistical assumption on
conclusions regarding the operation of moderator variables.

Homogeneity of Error Variance Assumption:
Clarifications

The statistical assumptions of ordinary least squares (OLS) regression include (a) inde-
pendence of observations, (b) normality of population scores, and (c) homoscedasticity
(i.e., the conditional variance of a criterion variable Y is the same irrespective of values
or levels of a predictor variable X or, stated differently, an equal spread of observed Y
scores about predicted Y [?] scores across values or levels of X) (Cohen & Cohen,
1983; Pedhazur, 1982).

An additional statistical assumption for the use of moderated multiple regression
analysis for testing moderating effects of categorical variables is homogeneity of
within-subgroup error (residual) variance (Kendall & Stuart, 1979). Homogeneity of
error variance exists when the variance in Y that remains after predicting ¥ from X is
equal across moderator-based subgroups (e.g., G, or o, _1, for males, 6%, or o}, _3,
for females). This equality allows for the overall residual Y variance to be estimated
from the mean square residual term (i.e., 62 or 65_3). In other words, homogeneity of
within-subgroup error variance is achieved when the variance in Y that is unac-
counted for by X is equal across moderator-based subgroups. In such situations,
of,‘ 4= of,z_;,z. Note that this assumption is equivalent to the perhaps more familiar
homogeneity of variance assumption in the context of analysis of variance (ANOVA)
models.

Relationship Between the Homoscedasticity
and Homogeneity of Error Variance Assumptions

Although the homoscedasticity and homogeneity of error variance assumptions
have been treated as synonymous (e.g., Stone & Hollenbeck, 1989), it deserves noting
that they are not equivalent. The homoscedasticity assumption applies to all OLS
regression models (including MMR), whereas the homogeneity of error variance
assumption applies only to MMR models. The homoscedasticity assumption appears
to be well understood and is described in most statistics and research methods
textbooks in the organizational sciences (e.g., Berry & Feldman, 1985). However,
researchers should not assume that meeting the more familiar homoscedasticity
assumption implies that the homogeneity of error variance assumption is also satisfied.
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In the presence of homoscedasticity, the homogeneity of error variance assumption
may or may not be satisfied.
The error variance for each of the moderator-based subgroups is

6% = S50 (1 = Pavo): [¥)

where 6% and pyy, are the Y variance and the X — Y correlation in each modera-
tor-based subgroup, respectively. Thus, the error variance for Subgroup 1 can be
expressed as

02y =Gy (1~ Pl = VIE (Y, - ¥ 1 X, + E[V(Y, - V) 1 X,] 6)

A
where E is the expectation (i.e., mean), V is the variance, and V (Y, — Y;) | X, refers
to the error variance at a given Xj.

Subgroup homoscedasticity. The homoscedasticity assumption for Subgroup 1 can
be verified by examinilr\ng the ¥, on X, regression model. Homoscedasticity is satisfied
if residuals (i.e., Y, — Y;) are similarly disn'ibul{ed across various points of X;. If one
assumes that Y, is similarly distributed around Y (i.e., the mean of errors equals zero),
Equation 3 reduces to

2= G2, (1 = plyay) = E[VY, - 1) 1X,]. @

For Subgroup 2, a similar expression for within-subgroup error variance can be
written as
A
Ol = Oty (1~ Piray) = E V(= ) 1 X1, ®

Similar to Subgroup 1, homoscedasticity can be verified for Subgroup 2 by
examining, the Y, on X, regression model. Homoscedasticity is satisfied if residuals
(i.e., Y, - Y,) are similarly distributed across various points of X,.

Overall homoscedasticity. To assess whether the homoscedasticity assumption is
satisfied for the overall regression model (what we label overall homoscedasticity),
one needs to examine the ¥ on X regression model including all scores (i.e., Subgroups
1 and 2 combined). The homoscedasticity assumption is satisfied if the ¥ — ¥ residual
scores are similarly distributed across various points of the X scale.

Heterogeneity of within-subgroup error variance in the presence of subgroup
and overall homoscedasticity. Meeting the homoscedasticity assumption does not
imply that the homogeneity of within-subgroup error variance assumption is also
satisfied. For example, if the Y variances are equal across the two subgroups (i.e.,
O%u) = O%), and there is a stronger X — Y relationship for one subgroup than the other
(e-g., Pxra) < Pxve)» Equation 2 indicates that the error variances must differ across
subgroups (i.e., 6%;, > O2,). Similarly, if the correlation coefficients are equal across
subgroups but Y variances differ, this situation also leads to a systematic violation of
the homogeneity of within-subgroup error variance assumption, even in the pres-
ence of subgroup and overall homoscedasticity. Finally, both the Y variances and
correlations may differ across subgroups, which also results in the violation of the
within-subgroup error variance assumption (unless, as shown in Equation 2, the
difference in Y variances is precisely counterbalanced by the difference in correlation
coefficients).
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Any of the three conditions mentioned above can exist even in the presence of
homoscedasticy. To illustrate that, even in the presence of homoscedasticity, differ-
ences in correlation coefficients across subgroups may lead to the violation of the
homogeneity of within-subgroup error variance assumption, we offer a graphic illus-
tration. Figure 1 shows a scatterplot of a hypothetical overall X — Y relationship for
males and females, in which X (a predictor variable) and Y (a criterion variable) are
both continuous in nature. The data shown in Figure 1 are homoscedastic. That is, the
data points shown in the graph are similarly distributed throughout the regression line.

Assume that one is interested in testing whether there is differential prediction for
gender-based subgroups. Then, one would test whether the dichotomous variable
gender (Z) (Z = 1, males; Z = 2, females) moderates the relationship between X and Y
shown in Figure 1. Thus, two separate X — Y scatterplots are drawn, one for the
relationship between X and Y when Z = 1 (males; shown in Figure 2) and one for the
relationship between X and Y when Z = 2 (females; shown in Figure 3). As with the
data plotted in Figure 1, each of the data sets in Figures 2 and 3 is also homoscedastic.
That is, each graph shows that the data points are similarly distributed throughout the
regression line. However, the amount of error variance present when Y is predicted
from X is clearly not equivalent for the two moderator-based subgroups (i.e., for males
and females). Although the data points are similarly distributed throughout each of the
two regression lines in Figures 2 and 3, the average deviation of the data points from
the line is larger for males (Figure 2) than for females (Figure 3). Stated differently,
the amount of error variance (62) is not equivalent across the two moderator-based
subgroups; that is, it is larger for the male (Figure 2) than for the female (Figure 3)
subgroup (i.e., 6%, > 6%2)-

In sum, Figures 1 to 3 clarify that even in the presence of subgroup and overall
homoscedasticity, heterogeneity of within-subgroup error variance can occur. These
figures illustrate that the homoscedasticity and homogeneity of error variance assump-
tions should not be treated synonymously and that satisfying homoscedasticity does
not necessarily imply that error variances are homogeneous across moderator-based
subgroups.

Are Within-Subgroup Error Variances
Homogeneous or Heterogeneous?

Figures 2 and 3 illustrate a situation in which the homogeneity of within-subgroup
error variance assumption seems to be violated. However, how can researchers more
precisely determine whether a specific data set in hand violates the homogeneity of
within-subgroup error variance assumption? As is the case with tests of other statistical
assumptions, researchers have the choice of using formal statistical tests or heuristic
guidelines (Weinzimmer, Mone, & Alwan, 1994).

First, regarding formal statistical tests, recall that the homogeneity of within-sub-
group error variance assumption in MMR is equivalent to the homogeneity of variance
assumption in ANOVA. Consequently, Bartlett’s (1937) homogeneity of variance test
could be directly modified from an ANOVA to an MMR context (cf. DeShon &
Alexander, 1996). This can be done by simply replacing unconditional subgroup
variances in the dependent variable with subgroup error variances (i.e., 0%; cf.
Equation 2) in Bartlett’s formulae. However, Bartlett’s test is adversely affected by
deviations from normality (Games, Winkler, & Probert, 1972). Consequently, a
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Figure 1: Scatterplot of a Hypothetical Relationship Between X and Y for Males and
Females Combined
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Figure 2: Scatterplot of the Same Hypothetical Relationship Between X and Y for Males
Only

rejection of a null hypothesis of homogeneity of within-subgroup error variance
may be due to deviations from normality and not from violating the homogeneity
assumption.

A second alternative is to use heuristics or empirically derived rules of thumb.
DeShon and Alexander (1996) conducted a Monte Carlo study regarding the accuracy
of MMR to estimate the moderating effect of a categorical variable. They manipulated
thousands of parameter values for subgroup sample sizes, heterogeneity of within-
subgroup error variance, departures from Y normality within each subgroup, and
within-subgroup correlation between predictor and criterion scores. Based on the
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Figure 3: Scatterplot of the Same Hypothetical Relationship Between X and Y for Females
Only

results of this large-scale simulation study, the general conclusion was that the F
statistic used in MMR begins to be adversely affected when the error variance in one
subgroup is approximately 1.5 times larger than the error variance in another
subgroup. Thus, this empirically derived 1.5 rule of thumb can be used for determining
whether heterogeneity of within-subgroup error variance is an artifact likely to affect
MMR-based conclusions.

In our view, a combination of formal procedures (e.g., Bartlett’s test) and heuristics
(i.e., the 1.5 DeShon & Alexander rule of thumb) optimizes decision making regarding
the potential impact of violating the homogeneity of within-subgroup error variance
assumption. Moreover, we recommend that both procedures be used and that conver-
gence be sought. Of course, if conclusions based on both the formal and heuristic
methods are congruent, then MMR users would be more confident about their decision.

Violating the Homogeneity of Error Variance
Assumption: Implications

Satisfying the homogeneity of within-subgroup error variance assumption may be
difficult in many circumstances. For instance, if a researcher tests a false null hypothe-
sis of no differential prediction (i.e., there actually is differential prediction in the
population of scores), the assumption of homogeneity of within-subgroup error
variance is almost certainly violated.

Assuming the following equalities,

O}, = Oy, O, =

Oy D
Byxm = Pxya) (“'Y(—(:'} ,

, (6)

538

and given that
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the null hypothesis of equal subgroup slopes is identical to the null hypothesis of equal
subgroup correlation coefficients. Thus, given Equation 2 and Equation 6, the assump-
tion will always be violated when the null hypothesis is false (Alexander & DeShon,
1994).

A similar situation occurs even when the assumed equalities shown in Equation 6
are relaxed. Assuming that

0}/ 0%, = O}/ Oy, ®

Equation 7 indicates that differences in slopes are still identical to differences in
correlations across subgroups.

If Equation 6 or Equation 8 is true, Equation 2 indicates that the error terms are
necessarily heterogenous. Note that the only, and perhaps rare, situation in which
o%,s would not differ across subgroups when pyy;s differ is when Equation 8 is true,
and the difference in Y variances across subgroups precisely offsets the difference in
X - Y correlations across subgroups.

This situation creates contradictory effects on statistical power. On one hand, larger
population effect sizes (i.e., differences between slopes or correlation coefficients
across subgroups) results in greater power. At the same time, however, a larger effect
size results in a greater violation of the homogeneity of error variance assumption
which, in turn, results in lower power. As we describe below, the overall impact of
these contradictory forces is a decrease in power. This decrease is particularly notice-
able when there is an inverse pairing of sample size with effect size, that is, the larger
subgroup n paired with the smaller correlation coefficient.

In general, violating the homogeneity of error variance assumption (i.e., having
error variance heterogeneity) has important practical implications regarding the use of
MMR for moderator variable detection with respect to both Type I error and statistical
power rates.

Effects on Type | Emror Rates:
Finding “False” Moderators

Dretzke et al. (1982) and DeShon and Alexander (1996) conducted Monte Carlo
investigations to ascertain the effects of violating the homogeneity of error variance
assumption on Type I error rates. In the less typical validation study when sample sizes
are equal across moderator-based subgroups (cf. Hunter, Schmidt, & Hunter, 1979;
Hunter, Schmidt, & Rauschenberger, 1984), Dretzke et al. ascertained that Type I error
rates associated with a null hypothesis of equal slopes across subgroups (i.e.,
By xay = Br. x) do not seem to be artificially inflated. Alternatively, in the more typical
situation of unequal subgroup sample sizes, error variance heterogeneity can result in
an inflated Type I error rate when testing for moderating effects. For example, with
subgroup ns (rs) of 50 (.25) and 100 (.75), the actual Type I error probability using an
ordinary F test was .18 for a nominal o of .05 (Dretzke et al., 1982).

Consistent with the previous illustration, Type I error rate inflation was found to be
most noticeable when the smaller subgroup sample size was paired with the larger

~ residual variance (i.e., the smaller subgroup X - Y correlation). Note, however, that
Dretzke et al.’s (1982) simulation held the X variance constant across subgroups (but
not the Y variance across subgroups; this is why subgroup correlations differed).
DeShon and Alexander (1996) showed that Dretzke et al.’s results regarding the
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robustness of MMR in equal subgroup n conditions should be qualified. More
precisely, DeShon and Alexander’s empirical results indicate that Dretzke et al.’s
conclusions hold only when the X variance is equal across subgroups. However, when
the X variance is moderately unequal across subgroups, heterogeneity of error variance
leads to overly conservative Type I error rates.

In sum, heterogeneity of error variance is likely to affect Type I error rates and lead
to erroneous conclusions regarding moderating effects. First, Type I error rates are
likely to be artificially inflated when sample sizes are unequal across subgroups. This
is most noticeable when the smaller subgroup sample size is paired with the smaller
validity coefficient (i.e., the larger error variance). Second, Type I error rates are also
affected under conditions of equal subgroup sample sizes. Type I error rates become
overly conservative when the X variance is dissimilar across subgroups. Thus, MMR
users should be especially aware of inaccurate Type I error rates when (a) sample sizes
are unequal across subgroups (resulting in overly liberal Type I error rates); and (b) sample
sizes are equal across subgroups and X variances are unequal across subgroups
(resulting in overly conservative Type I error rates).

Effects on Statistical Power: Incorrectly
Dismissing Moderator Variables

To address the issue of statistical power, which was not examined in Dretzke et al.’s
(1982) simulation, Alexander and DeShon (1994) conducted a Monte Carlo study and
ascertained that under unequal subgroup sample size conditions, when the subgroup
with the larger sample size is associated with the larger error variance (i.e., the smaller
X - Y correlation), statistical power is lowered markedly. This result was consistent
for situations involving k = 2 or more subgroups. The ordinary F test for assessing a
moderating effect with MMR is thus not robust to violations of the homogeneity of
within-subgroup error variance assumption. However, power levels do not suffer as
much when sample sizes are equal across moderator-based subgroups.

This specific scenario in which the subgroup with the larger n is paired with the
smaller validity coefficient is the most typical situation in validation research in a
variety of organizational settings (e.g., industrial, educational, and military) (Hunter,
Schmidt, & Hunter, 1979; Valentine, 1977). Typically, the majority subgroup (e.g.,
Whites, males) is more numerous than the minority subgroup (e.g., African
Americans, females), and the majority subgroup presents a validity coefficient that
is smaller than that of the minority subgroup. Extensive meta-analytic research by
Hunter, Schmidt, and colleagues has documented this pairing of subgroup n and
validity coefficient in the late 1970s and early 1980s, and several more recent studies
indicate that this situation is still pervasive (DeShon & Alexander, 1994b; Hattrup &
Schmitt, 1990).

In sum, Alexander and DeShon’s (1994) simulation results demonstrate that this
most typical situation in validation research in which the subgroup with the larger n
presents the smaller validity coefficient is likely to lead to a Type II error by
incorrectly dismissing moderating effects. Thus, it is not surprising that the
empirical evidence accumulated thus far suggests that differential prediction on
the basis of, for example, cognitive abilities tests is not supported for the major ethnic
subgroups (SIOP, 1987).
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Summary: Conditions Leading to Incorrect Decision Making
Regarding the Effects of Categorical Moderator Variables

Simulation work by Dretzke et al. (1982), Alexander and DeShon (1994), and
DeShon and Alexander (1996) lead to two major conclusions regarding the impact of
violating the homogeneity of within-subgroup error variance assumption on MMR-
based inferences, especially for the typical validation study in which sample sizes are
not equal across moderator-based subgroups. First, with respect to Type I errors,
researchers are more likely to erroneously conclude that a moderating effect exists
when the smaller subgroup sample size is paired with the larger residual variance (i.e.,
the smaller X — Y correlation coefficient). Second, with respect to Type II errors,
researchers are more likely to erroneously dismiss moderating effects when the larger
subgroup sample size is paired with the larger residual variance (i.e., the smaller X — Y
correlation coefficient). Finally, reviews of the personnel selection literature suggest
that the majority subgroup (i.e., larger sample size) typically has the smaller validity
coefficient. Consequently, committing a Type II error may be more likely and frequent
than committing a Type I error when MMR is used to test hypotheses regarding
categorical moderator variables in validation research.

Alleviating Heterogeneity of Error Variance Effects:
Solutions Recently Proposed

Inverse Data Transformation

Given the aforementioned implications of violating the homogeneity of within-
subgroup error variance assumption, Hsu (1994) suggested a possible solution to
mitigate heterogeneity and, seemingly, improve the assessment of moderating effects
using MMR. Hsu asserted that data transformations are routinely conducted in social
science research to meet the assumptions required by various statistical tests such as
ANOVA and other methods based on the general linear model. Hence, if there exists
a data transformation that alleviates the heterogeneity of within-subgroup error vari-
ance problem, this transformation should be used. According to Hsu, the inverse
transformation of the criterion (i.e., ¥ = 1/Y) provides such a solution. By obtaining
Y’ and conducting the subsequent MMR analysis on ¥ (rather than on the original Y),
heterogeneity of within-subgroup error variance is eliminated. Toillustrate this contention,
Hsu provided an example in which there was heterogeneity of within-subgroup error
variance. After the inverse transformation was implemented on the criterion, the error
variances became homogenous. Thus, subsequent moderator analysis results based on
MMR were seemingly more meaningful and trustworthy because the assumption was
not violated.

Inverse Data Transformation:
A Remedy That Kills the Patient

We agree that the heterogeneity of within-subgroup error variance problem is
pervasive in organizational science research. Moreover, the implications of this
violation, as described above, are serious and consequential. However, the inverse
transformation solution advocated by Hsu (1994) suffers from a limitation: It reduces
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heterogeneity of within-subgroup error variance but, in many situations, it may also
eliminate the moderating effect. Stated differently, once the criterion Y has been
transformed to Y’ = 1/Y, the probability of detecting population moderating effects may
be reduced to values close to zero.

The inverse transformation equates within-subgroup error variances by equating ¥
variances across subgroups. Analytically, Equation 2 shows that, once Y variances are
equal, equating the error variances across moderator-based subgroups can only be
conducted at the expense of also equating the X — Y correlations across subgroups (i.e.,
eliminating the moderating effect). That is, if the variance of Y scores is constant across
subgroups, the only remaining variable besides 0%, in Equation 2 is pyy,. Thus,
Equation 2 shows that the only way to achieve within-subgroup error variance
homogeneity (i.e., 6%;, = G%) is to equate pyy, across subgroups.

This type of transformation defeats the purpose of improving the accuracy in
estimating moderating effects. More precisely, in certain situations, this transformation
may guarantee that even if there is differential prediction, it will not be detected. Thus,
even though a researcher is more confident that the homogeneity of within-subgroup
error variance assumption is met, using MMR on the newly created Y’ variable may
lead to the sample-based conclusion that there is no moderating effect because the
sample-based X ~ Y correlations are now equal for all values of Z, despite the fact that
the effect may be present (and of substantial magnitude) in the population.

The aforementioned analytic explanation that the moderating effect is often elimi-
nated using the inverse transformation can be illustrated using Hsu’s (1994) data. Hsu
presented the example of a continuous criterion variable Y, a dichotomous predictor
X, and a dichotomous moderator Z. Y was the number of tasks accomplished per hour
of work after 1 week of training, X was training method (X = 1: Training Method 1;
X =2: Training Method 2), and Z was experience level (Z = 1: high experience, Z = 2: low
experience). Illustrative data were available for 12 workers (three in each of the four
cells of the design). These data are reproduced in Table 1.

Table 1 shows Hsu’s (1994) original data for each cell together with each cell’s
variance and mean. Also, Table 1 shows the original criterion data (¥) and the criterion
data resulting from the inverse transformation (i.e., Y = 1/Y). Based on these data, we
computed the Y variance, the error variance, and the correlation coefficient between
training method and the criterion for each of the two levels of the moderator variable
Z (i.e., experience level).

An initial perusal of the original data suggests that there may be an interaction
between training method and degree of experience. More precisely, the impact of
training method seems to be greater for high-experienced than for low-experienced
workers. A more formal test of this interaction reveals that, indeed, training method
and degree of experience interact in affecting the number of tasks performed per hour,
F (1, 8) =3.63, p = .093 (Hsu, 1994, Table 2, p. 223). Note, however, that the p value
does not reach the traditional .05 level of significance due to the unusually small
sample size used in Hsu’s illustration.

Table 1 also includes the transformed criterion data. As a result of the inverse
transformation, Y variances, residual variances, and correlation coefficients between
training method and the criterion are identical across experience-based subgroups. A
formal test of the interaction shows that, indeed, the transformation eliminated the
effect, F (1, 8) = .00, p = 1.00 (Hsu, 1994, Table 2, p. 223).
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Table 1
lllustrative Data Reproduced from Hsu: Number of Tasks Performed per Hour (Y)
as a Function of Training Method (X) and Trainee’s Experience Level (2)

Original Data (Y) Transformed Data (Y’ = 1/Y)
Experience Level Experience Level
High Low High Low
Training method 1 3.33 1.1 .30 .90
4.00 1.17 .25 .85
5.00 1.25 .20 .80
2 = 842 2= .07% 8% = 052 8% =.052
M=4111 M=1.179 M= .25 M= .85
Training method 2 5.00 1.25 .20 .80
6.66 1.33 .15 75
10.00 1.43 .10 .70
8% =2546° &%= .089° §%=.052 &%= 052
M=7.222 M=1.337 M=.15 M=.75

Source. Hsu (1994, Table 1, p. 222).

Nota. For original data, when experience level is high, S§/= 5.78,"S§ =2.87, and rxy=.71; when
experience level is low, Sﬁz: .013, Sﬁ =.005, and rxy=.77. For transformed data, when experi-
ence level is high and low, S5 =.005, S5 =.002, and rxy =.78.

In sum, because the inverse data transformation proposed by Hsu (1994) may lead
MMR users to commit a Type II error and incorrectly dismiss population moderating
effects, we now turn to alternative data analytic strategies that can be used to test these
hypotheses in the presence of within-subgroup error variance heterogeneity.

Allemative Methods for Estimating Moderating
Effects and Assessing Differential Prediction

Gulliksen and Wilks (1950) recommended against the use of inequality of slope
tests across subgroups in conditions of error variance heterogeneity. However, they
did not discuss any alternative procedures that could be used in these situations.
Nevertheless, in the presence of error variance heterogeneity, alternative methods (i.e.,
procedures other than the ordinary ¢ or F test in MMR) can be implemented. Such
procedures include (a) nonparametric methods that do not require equality of error
variances for moderator-based subgroups, and (b) parametric methods that include
direct or indirect procedures and approximations for correcting the degrees of freedom
associated with the more typical ¢ and F parametric tests. The use of alternative
nonparametric and parametric tests is appropriate in situations involving heterogeneity
of error variance because, especially when sample sizes differ across subgroups,
MMR-based results cannot be trusted in terms of Type I or Type II error rates.

Nonparametric methods. A nonparametric statistical test available to replace MMR
in situations with heterogeneity of error variance is Marascuilo’s (1966) U statistic.
This statistic approximates a chi-square distribution and is similar to the ordinary F
statistic with the exception that it uses separate error variance estimators for each of
the k moderator-based subgroups (i.e., 6%;), GZa), - - - O) (see Dretzke et al., p. 377,
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and Marascuilo, 1966, for determining degrees of freedom, and for formulae and test
procedures).

In general, nonparametric techniques such as Marascuilo’s U and rank-transforma-
tions tests result in lower statistical power rates than do parametric tests. Thus,
parametric tests are typically preferred over nonparametric methods (e.g., Olejnik &
Algina, 1987). Accordingly, we now turn to parametric alternatives.

Parametric methods. Less traditional parametric methods that directly or indirectly
correct the degrees of freedom associated with more traditional tests are (a) Welch-
Aspin’s F approximation (F*) (Aspin, 1948; Welch, 1938), (b) James’s second-order
approximation (J) (DeShon & Alexander, 1994a; James, 1951), and (c) Alexander and
colleagues’ normalized-¢ approximation (A) (Alexander & Govern, 1994; DeShon &
Alexander, 1996).

First, the F* statistic approximates an F distribution. F* is similar to Marascuilo’s
U statistic in that it also uses separate error variance estimators for each of the k
moderator-based subgroups. However, whereas U is asymptotically distributed, F* is
based on a finite degrees of freedom (see Dretzke et al., 1982, p. 378, for formulae and
test procedures). Second, the J statistic, originally developed for testing the equality
of k independent means in the presence of heterogeneity of variance, was adapted by
DeShon and Alexander (1994a) to test for the equality of regression slopes. The
computation of J entails calculating a U statistic and then correcting the degrees of
freedom used to reference U to the chi-square distribution (see DeShon & Alexander,
1994a, 1996, for formulae and test procedures). Finally, the A statistic approximates
a chi-square distribution with k — 1 degrees of freedom (k is the number of moderator-
based subgroups) and is based on a normalizing transformation of the ¢ statistic (see
DeShon & Alexander, 1994a, 1996, for formulae and test procedures). FORTRAN and
SAS computer programs are available for the computation of F*, J, and A (DeShon &
Alexander, 1994a, 1996).

Relative performance of the F*, J, and A statistics. DeShon and Alexander (1996)
empirically compared the performance of the F*, J, and A statistics under various
conditions of equal and unequal subgroup sample sizes, equal and unequal error
variances, departures from Y normality within each subgroup, and X - Y correlations
ranging from .10 to .90. The comparison of the relative performance of these tests
yielded the following general results and conclusions. First, under conditions of error
variance heterogeneity, J had a slight performance advantage over F* and A when
sample sizes were small (i.e., 10 to 25). Second, the performance of F* worsened as
the number of moderator-based subgroups increased from two to eight. Third, the
performance of A and J was very similar across various levels of error variance
heterogeneity, sample size, and number of subgroups simulated. Fourth, A was more
robust to violations of ¥ normality within subgroups as compared to F* and J. Fifth,
unlike F*, A was not adversely affected by an increase in the number of subgroups.
Sixth, computation of A is simpler than the computation of J. Based on the aforemen-
tioned six considerations, DeShon and Alexander’s (1996) general conclusion and
recommendation is that inferences regarding differential prediction under conditions
of error variance heterogeneity should be based on the normalized-¢ approximation A
statistic.
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Summary and Conclusions

MMR is a consensually accepted method for assessing moderating effects of
categorical variables in the organizational sciences. However, heterogeneity of within-
subgroup error variance is an artifact that may lead to incorrect MMR-based conclu-
sions regarding the operation of moderator variables. Nevertheless, a literature review
of the extent to which this assumption is violated indicates that management and
applied psychology researchers are not aware of the issue. Accordingly, our intent was
to raise awareness regarding the distinct homogeneity of error variance assumption,
the consequences of violating this assumption, and alternative procedures to imple-
ment when the assumption is violated.

First, we clarified the nature of the homogeneity of within-subgroup error variance
assumption and distinguished it from the homoscedasticity assumption; these assump-
tions are not equivalent, and the homogeneity of within-subgroup error variance assump-
tion can be violated even in the presence of subgroup and overall homoscedas-
ticity. Second, we delineated the consequential effects of heterogeneity of
within-subgroup error variance in terms of making incorrect conclusions regarding
the presence or absence of moderating effects, in general, and differential prediction
in human resources management research. In the most typical validation study in
which the subgroup with the larger n (i.e., majority subgroup) is paired with the smaller
validity coefficient, heterogeneity of within-subgroup error variance leads to very low
statistical power. Consequently, organizations may (unknowingly) use selection and
placement tests that predict performance differentially for various ethnic- or gender-
based subgroups. Third, although researchers are eager to advance solutions that
mitigate the detrimental impact of violating the homogeneity of within-subgroup error
variance assumption on MMR, a recently proposed inverse data transformation
procedure should not be used: Even though it alleviates heterogeneity of within-
subgroup error variance, it may also eliminate the moderating effect altogether. Finally,
the empirical Monte Carlo evidence accumulated thus far favors the use of alternative
parametric methods such as the A statistic in lieu of MMR for testing moderator
variable hypotheses when the homogeneity of within-subgroup error variance assump-
tion is violated.
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