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Abstract
Cross-level interaction effects lay at the heart of multilevel contingency and interactionism the-
ories. Also, practitioners are particularly interested in such effects because they provide infor-
mation on the contextual conditions and processes under which interventions focused on
individuals (e.g., selection, leadership training, performance appraisal, and management) result
in more or less positive outcomes. We derive a new intraclass correlation, rb, to assess the
degree of lower-level outcome variance that is attributed to higher-level differences in slope
coefficients. We provide analytical and empirical evidence that rb is an index of variance that
differs from the traditional intraclass correlation ra and use data from recently published arti-
cles to illustrate that ra assesses differences across collectives and higher-level processes (e.g.,
teams, leadership styles, reward systems) but ignores the variance attributed to differences in
lower-level relationships (e.g., individual level job satisfaction and individual level performance).
Because ra and rb provide information on two different sources of variability in the data struc-
ture (i.e., differences in means and differences in relationships, respectively), our results suggest
that researchers contemplating the use of multilevel modeling, as well those who suspect non-
independence in their data structure, should expand the decision criteria for using multilevel
approaches to include both types of intraclass correlations. To facilitate this process, we offer
an illustrative data set and the icc beta R package for computing rb in single- and multiple-
predictor situations and make them available through the Comprehensive R Archive Network
(i.e., CRAN).
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Researchers in organizational behavior, human resource management, entrepreneurship, strategy, and

many other fields now explicitly recognize that lower-level entities are usually nested within higher-

level collectives. For example, employees are nested within jobs (e.g., Taylor, Li, Shi, & Borman,

2008) and teams (e.g., Kim, Bhave, & Glomb, 2013), establishments within companies (e.g., Takeu-

chi, Chen, & Lepak, 2009), and firms within industries (e.g., Short, Ketchen, Bennett, & du Toit,

2006). Similarly, a nested data structure exists in studies involving longitudinal or repeated measures

designs in which the lower level refers to observations and the higher level to the units (e.g., entrepre-

neurs, teams, firms) about which data have been collected over time (e.g., Uy, Foo, & Aguinis, 2010).

Covariation between higher-level variables and lower-level outcomes leads to errors of predic-

tion if a researcher uses statistical approaches such as ordinary least squares (OLS) regression, which

are not designed to model data structures that include dependence due to clustering (Aguinis, Gott-

fredson, & Culpepper, 2013; Heck, Thomas, & Tabata, 2010; Hox, 2010; Raudenbush & Bryk,

2002; Snijders & Bosker, 2012). In other words, dependence is ‘‘not adequately represented by the

probability model of multiple linear regression analysis’’ (Snijders & Bosker, 2012, p. 3) and ‘‘the

effect is generally not negligible’’ (Hox, 2010, p. 5).

Multilevel modeling, also referred to as hierarchical linear modeling (HLM) (Raudenbush &

Bryk, 2002), mixed-effect models (Cao & Ramsay, 2010), random coefficient modeling (Longford,

1993), and covariance components models (e.g., Searle, Casella, & McCulloch, 1992), allows

researchers to explicitly incorporate and model bias in standard errors and statistical tests resulting

from the dependence of observations that occurs in nested data structures (Kenny, Korchmaros, &

Bolger, 2003). Moreover, multilevel modeling allows researchers to assess three types of relation-

ships (Mathieu, Aguinis, Culpepper, & Chen, 2012). First, it allows for tests of lower-level direct

effects: whether a lower-level predictor X (i.e., Level 1 or L1 predictor) has an effect on a lower-

level outcome variable Y (i.e., L1 outcome). For example, there may be an interest in assessing

whether individual job satisfaction predicts individual job performance. Second, it allows for tests

of cross-level direct effects: whether a higher-level predictor W (i.e., Level 2 or L2 predictor) is

related to a L1 outcome variable Y. For example, a researcher may want to test whether team cohe-

sion (an L2 variable) predicts individual job performance (an L1 outcome). Third, it allows for tests

of cross-level interaction effects: whether the nature and/or strength of the relationship between two

lower-level variables (e.g., L1 predictor X and L1 outcome Y ) change as a function of a higher-level

variable W. For example, a researcher may be interested in testing the hypothesis that the relation-

ship between individual job satisfaction and individual performance may vary as a function of (i.e.,

is moderated by) the degree of team cohesion such that the relationship will be stronger for highly

cohesive compared to less cohesive teams.

One of the three types of effects mentioned previously, cross-level interactions, is at the heart of

modern-day contingency theories, person-environment fit models, and any theory that considers

outcomes to be a result of combined influences emanating from different levels of analysis

(Mathieu et al., 2012). In addition to their specific role in those theoretical models, cross-level

interaction effects are important in general because they are indicative of the presence of modera-

tor variables. Specifically, the extent to which we understand the presence of cross-level interac-

tions is an indication of theoretical progress because such relationships inform us of the conditions

under which relationships change in nature, strength, or both. Cross-level interaction effects are

particularly useful for practice because they provide information on the situations when a given

intervention may result in more or less positive outcomes. For example, practitioners are partic-

ularly interested in knowing whether pre-employment tests, leadership training and development

programs, performance management and appraisal processes, and compensation systems are

equally as effective in terms of improving individual performance across different types of jobs

and occupations, units of a firm (e.g., branches of a bank), and geographic locations (e.g., subsid-

iaries in different countries).
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There is a fundamental question that all substantive researchers face prior to embarking in the

search for cross-level interaction effects. Moreover, this fundamental question has remained

unchanged since the very inception of multilevel modeling (e.g., Burstein, Linn, & Capell, 1978;

Robinson, 1950) and, simply put, is: What is the degree of variability of a lower-level relationship

across higher-order units? This has been and continues to be a critical question because its answer will

dictate whether one should proceed with a formal test of cross-level moderator hypotheses. Stated dif-

ferently, variability in the relationship between two variables across higher-level units is a precondition

for the presence of moderator variables that could possibly account for this variability.

The goal of our article is to offer an expanded and more comprehensive approach to answering the

question of whether there is sufficient variability in a lower-level relationship across higher-level units

to warrant the search for cross-level interaction effects. The remainder of our article is organized as

follows. First, we describe how researchers typically assess variability across higher-level collectives

or contexts and clarify that this usual procedure is not informative regarding the possible presence of

cross-level interaction effects. Second, we offer a general variance decomposition of L2 variability in

lower-level scores. This section includes a description of the multilevel model, the typical procedure

for assessing the presence of variability based on the intraclass correlation (ICC) ra, and the derivation

of a new index of variability in lower-level relationships across higher levels of analysis, which we

label intraclass correlation rb. Third, we describe a Monte Carlo study complementing analytical

material in the previous section to provide evidence that ra and rb are indexes of orthogonal sources

of variance. Fourth, we use data from recently published articles to illustrate the need for our recom-

mended expanded procedure that includes rb—and also demonstrate how decisions regarding the use

of multilevel modeling improve as a consequence. Fifth, we compare and show the superiority of our

newly proposed rb to other indicators of variability that, although available in the statistical and meth-

odological literature, are not usually implemented by organizational science researchers. For example,

we describe that these indicators rely on significance testing procedures that require a large number of

L2 units that is not frequently observed in management and organizational studies research (Mathieu

et al., 2012). Sixth, we offer an illustrative data set and the R function icc_beta for computing rb in

single- and multiple-predictor situations and also make this package available through the Comprehen-

sive R Archive Network (CRAN; http://cran.us.r-project.org). Finally, we close with recommendations

regarding the expanded decision-making procedure for examining cross-level interaction effects and

the possible presence of nonindependence in future empirical research, even if the particular research

design and hypotheses do not include multilevel considerations explicitly.

Assessing Cross-Level Dependence and Variability

As is the case in all empirical research, theory considerations dictate the appropriateness of a par-

ticular data-analytic approach. Specifically regarding the possibility of using multilevel modeling

in general and testing hypotheses about cross-level interactions in particular, there may be

theory-based considerations that lead a researcher to suspect that dependence may be present in the

data (i.e., variability based on a higher-level context or process). Moreover, as noted by Kenny and

Judd (1996), ‘‘observations may be dependent, for instance, because they share some common fea-

ture, come from some common source, are affected by social interaction, or are arranged spatially or

sequentially in time’’ (p. 138). Stated differently, the resulting data structure may include depen-

dence of observations due to shared experiences even if there is no formal hierarchical structure such

as individuals formally belonging to different teams.

Given theory-based considerations, there is a need to assess empirically the extent to which these

shared experiences and context and, more generally, the clustering of entities within collectives have

actually led to dependence. To do so, the consistent recommendation in the multilevel modeling lit-

erature is to assess the degree of dependence by computing the intraclass correlation ra, which
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assesses the proportion of between-group variance relative to total variance in an outcome variable

and can be interpreted as the correlation between two randomly selected members of the same group.

This same recommendation is offered in many of the most influential and established textbooks

addressing multilevel modeling (e.g., Heck et al., 2010; Hox, 2010; Raudenbush & Bryk, 2002;

Snijders & Bosker, 2012). As summarized by Heck et al. (2010),

The first step in a multilevel analysis is partitioning the variance in an outcome variable into its

within- and between-group components. If it turns out that there is little or no variation (per-

haps less than 5%) in outcomes between groups, there would be no compelling need for con-

ducting a multilevel analysis. (p. 6)

Not surprisingly, given this consistent recommendation in the methodological literature, substantive

researchers compute and report results regarding ra as evidence regarding the presence or absence of

dependence and for justifying using multilevel modeling (or not) and subsequently testing cross-

level interaction hypotheses. This is a pervasive and common practice that is reported in virtually

all articles addressing multilevel issues (e.g., Halbesleben, Wheeler, & Paustian-Underdahl, 2013;

Hu & Liden, 2013; Hülsheger, Alberts, Feinholdt, & Lang, 2013). Although some methodological

sources have raised concerns about the sole reliance on ra (e.g., Snijders & Bosker, 2012), and as we

describe later in our article, some indicators of sources of L2 variance exist, using ra is a well-

established procedure for determining the possible presence of dependence and deciding whether

the data structure requires the use of multilevel modeling. Next, we offer a general variance decom-

position of L2 variability, which leads to the derivation of a new intraclass correlation rb and ana-

lytical and empirical (i.e., Monte Carlo) evidence that this new index accounts for variance that is

orthogonal to the variance assessed by ra, which refers to differences across collectives and higher-

level processes but ignores the variance attributed to differences in lower-level relationships.

General Variance Decomposition of Level 2 Variability in yij Scores

Multilevel Model With a Single Predictor

The relationship between a predictor and a criterion at the lower level of a multilevel study is

(Enders & Tofighi, 2007; Raudenbush & Bryk, 2002):

yij ¼ b0j þ b1jxij þ rij; ð1Þ

where yij is the criterion score for the ith person in group j, b0j is the intercept value for group j, b1j is

the slope for group j, xij is the predictor score for the ith person in group j, and rij is the L1 residual

term such that rij � N 0;s2ð Þ. The single predictor case involves estimating the following L2

intercept-only models (i.e., models that exclude L2 predictors) (Enders & Tofighi, 2007; Hofmann

& Gavin, 1998; Hox, 2010):

b0j ¼ �00 þ u0j; ð2Þ

where the intercept �00 and the residual term u0j describe how group-level intercepts deviate from

the grand-mean intercept, respectively, and

b1j ¼ �10 þ u1j; ð3Þ

where the intercept �10 and the residual term u1j describe how group-level slopes deviate from the

grand-mean slope, respectively.

The usual assumption is that regression coefficients are distributed jointly as random normal vari-

ables (Hox, 2010; Raudenbush & Bryk, 2002),
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b0j

b1j

� �
� N2

�00

�10

� �
;

t00 t01

t01 t11

� �� �
: ð4Þ

That is, t00 and t11 are the variances of b0j and b1j, respectively; t01 is the covariance between b0j

and b1j; and u0j and u1j are residuals, or random effects, that capture group differences as mentioned

previously. The average yij across L2 units is �00. Additionally, as mentioned previously, �10 is the

grand-mean slope of yij on xij across L2 units. Equations 2 and 3 do not include L2 predictors to be

able to quantify the total variance attributed to group differences in intercepts (Equation 2) and

slopes (Equation 3). Thus, the L2 Equations 2 and 3 can be substituted into the L1 Equation 1 to

yield the mixed-model version of the multilevel linear model:

yij ¼ �00 þ �10xij þ u0j þ u1jxij þ rij: ð5Þ

General Multilevel Model

In matrix notation, the multilevel model with more than one predictor is the following (Hox, 2010;

Raudenbush & Bryk, 2002):

yij ¼ x
0

ijβj þ rij; ð6Þ

where x
0
ij ¼ xij0; xij1; . . . ; xijp

� �
is a pþ 1 dimensional row vector of predictors for person i in group j,

xij0 ¼ 1 for the intercept, βj is a pþ 1 dimensional vector of coefficients (the first element is the

intercept and the remaining are slopes), and rij is an error term. Let �x
0 ¼ �x0; �x1; . . . ; �xp

� �
be a vector

of grand means and �x
0
j ¼ �xj0; �xj1; . . . ; �xjp

� �
a vector of predictor averages for group j, N ¼

PJ
j¼1

Nj

where Nj is the sample size in group j (j ¼ 1, . . . , J), and the overall sample mean is

�y ¼
PJ
j¼1

Nj�yj=N . Also, let X
0

j ¼ x1j; . . . ; xNjj

� �
be a pþ 1ð Þ � Nj matrix of predictors for group j and

X
0 ¼ X

0

1; . . . ;X
0

J

� �
a pþ 1ð Þ � N matrix of predictors across the J groups.

Expanding on Equation 6, the typical multilevel model assumes that

rij � N 0;s2
� �

; ð7Þ

yijjxij; βj;s
2 � N x

0

ijβj;s
2

� 	
; ð8Þ

βj � Npþ1 γ ;Tð Þ; ð9Þ

where s2 is the error variance conditioned on x
0
ijβj, γ is a vector of fixed-effects, and T is the

variance-covariance matrix of the regression coefficients. Note that deviation from the overall out-

come variable mean is denoted by

yij � �y ¼ yij � �yj

� �
þ �yj � �y
� �

; ð10Þ

where yij � �yj captures within group-variability whereas �yj � �y measures between-group variance.

Accordingly, each source of variance is independent of the other.
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In the next section, we derive rb using the general variance decomposition of yij in Equation 10.

Before we do so, however, we note that rescaling predictors is common in multilevel modeling to

help in the interpretation of results (Aguinis et al., 2013; Dalal & Zickar, 2012; Enders & Tofighi,

2007). The two main rescaling approaches are group-mean centering and grand-mean centering, but

other options include a hybrid approach (i.e., group-mean centering for L1 predictors and using

group-level means for L2 predictors) as well as no rescaling at all. In the context of offering

best-practice recommendations for assessing cross-level interaction effects, Aguinis et al. (2013)

suggested using group-mean centering in most cases because the use of grand-mean centering con-

flates the between-L2 and within-L2 effects. Moreover, Aguinis et al. (2013), Enders and Tofighi

(2007), and Hofmann and Gavin (1998) concluded that if a researcher uses grand-mean centering

for the L1 predictor, it is not possible to make an accurate, or even meaningful, interpretation of the

cross-level interaction effect. However, because there are several rescaling approaches available, the

model in Equation 6 is general and can accommodate any centering strategy by, for example, defin-

ing the vector of predictors as xij � �x for grand-mean centering or xij � �xj for group-mean centering.

Moreover, as we describe later in our article, the computation of rb remains the same regardless of

the particular rescaling strategy.

Analytical Evidence of Differences between ra and rβ

As shown in the Appendix, the sample variance S2 can be partitioned as follows:

S2 ¼ 1

N � 1

XN

i¼1

yij � �y
� �2¼ S2

W þ S2
B; ð11Þ

where the between-group variance is S2
B ¼ 1

N�1

PJ
j¼1

Nj �yj � �y
� �2

and the within-group variance is

S2
W ¼ 1

N�1

PJ
j¼1

PNj

i¼1

yij � �yj

� �2
. The traditional intraclass correlation ra is defined as the portion of var-

iance in the criterion (i.e., outcome variable) attributed to grouping or nesting (i.e., L2 variability),

which is the relative size of S2
B to the total variance,

ra ¼
S2

B

S2
B þ S2

W

: ð12Þ

To compute ra, we first estimate the following random-intercepts model, which is equivalent to a

one-way random effects analysis of variance (Aguinis et al., 2013; Hox, 2010; Snijders & Bosker,

2012):

yij ¼ �00 þ u0j þ r0ij; ð13Þ

where, as noted earlier, �00 is the grand mean of yij, u0j is the corresponding random effect, and r0ij is

the L1 error term. Based on the model in Equation 13, ra is computed as follows (Raudenbush &

Bryk, 2002):

ra ¼
t00

s2
Y

; ð14Þ

where t00 is the variance of u0j and s2
Y is the variance of yij.

Equation 10 shows that ra is orthogonal to within-group deviations from the mean, yij � �yj, and

Equation 12 demonstrates that ra measures the share of criterion variance attributed to between-
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group differences in criterion means. In fact, derivations in the Appendix demonstrate that the

expected value of S2
B is a function of both between-group intercept and slope differences as follows:

E S2
BjX


 �
¼ 1

N � 1

XJ

j¼1

Njtr 1� Nj

N

� �
Tþ γγ

0
� �

�xj�x
0

j

� 

� N

N � 1
tr γγ

0
�x�x
0

h i
þ J � 1

N � 1
s2; ð15Þ

where tr indicates a matrix trace (i.e., the sum of the elements along the diagonal).

In short, ra is a function of between-group variability in intercepts and slopes as quantified by T.

However, the extent to which slope differences affect variability in �yj � �y is a function of group pre-

dictor mean differences. For simplicity of exposition, consider the case where �xj ¼ �x for all j and the

last p elements of �x are zero (e.g., grand-mean centered). One implication is that when groups are

equivalent on the predictors, all but the first element of �x equals zero and E S2
BjX


 �
simplifies signif-

icantly. For this special case, if Nj ¼ N� and �xj ¼ �x then E S2
BjX


 �
reduces to

N � N�
N � 1

T00 þ
J � 1

N � 1
s2; ð16Þ

where T00 ¼ Var b0jjX
� �

and N ¼ JN�. Consequently, researchers can expect ra to include some

variance attributed to group slope differences in cases where groups vary in average predictor

values.

The following derivations show that a portion of slope variability across groups also contributes

to variability in yij � �yj, which implies that ra accounts for only a portion of variability attributed to

slope differences. This finding is important because variability of yij � �yj is orthogonal to the tradi-

tional between group variability as indexed by �yj � �y.

Consider S2
W and note that the average criterion score for group j is,

�yj ¼
1

Nj

XNj

i¼1

x
0

ijβj þ rij

� 	
¼ �x

0

jβj þ �rj; ð17Þ

where �rj ¼ 1
Nj

PNj

i¼1

rij. Consequently, the within-group deviation is,

yij � �yj ¼ x
0

ijβj þ rij � �x
0

jβj � �rj ¼ xij � �xj

� �0
βj þ rij � �rj: ð18Þ

There are several important observations regarding Equation 18. First, partitioning variance in

yij � �yj naturally leads to group-mean centering predictors because the within-group average on the

outcome, �yj, is a function of �xj. This implication is consistent with the consensual recommendation

mentioned earlier that group-mean centering be the preferred rescaling strategy within the specific

context of assessing cross-level interaction effects and quantifying outcome variance attributed to

slope heterogeneity. Second, in Equation 18 the first element of xij � �xj is zero because by definition

xij0 ¼ �xj0 ¼ 1. Consequently, group j’s intercept does not influence yij � �yj. This result reinforces the

finding in Equation 10 that the sources of variance captured by ra and rb are indeed orthogonal.

In order to find an estimator for rb, we first must identify the expected value of the within-group

variance, S2
W , given a matrix X of predictors. In fact, the Appendix includes derivations that imply

that E S2
W jX


 �
is defined as

E S2
W jX


 �
¼ tr Tþ γγ

0
� 	 X

0

cXc

N � 1

� �
þ N � J

N � 1
s2; ð19Þ

where, as shown in Equation 9, T is the variance-covariance matrix of the random effects and γ is a

vector of fixed effects. Furthermore, X
0

cXc ¼
PJ
j¼1

PNj

i¼1

xij � �xj

� �
xij � �xj

� �0
, which by definition implies
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that Xc is a N � pþ 1ð Þ matrix of group-mean centered predictors for all groups and individuals.

Note that the first column of Xc includes zeroes for the intercept and X
0

cXc=ðN � 1Þ represents the

average within-group relationship among the predictors over groups. Equation 19 shows that

E S2
W jX


 �
is a function of the random effects variance-covariance matrix, T, the relationships among

group-mean centered predictors X
0

cXc=ðN � 1Þ, the fixed effects, γ , and within-group error variance

s2. Accordingly, the portion of E S2
W jX


 �
that is attributed to group slope differences is tr T

X
0
cXc

N�1

h i
and the intraclass correlation that quantifies the share of within-group outcome variance attributed

to slope differences is

rb ¼ tr T
X
0

cXc

N � 1

� �
S�2: ð20Þ

One observation from Equation 20 is that the first row and column of X
0

cXc includes zeros, which

has the effect of removing the covariances between intercepts and slopes when computing

tr T
X
0
cXc

N�1

h i
. Stated differently, covariances between group intercepts and slopes do not contribute

to variance quantified by rb.

Monte Carlo Empirical Evidence of Differences Between ρα and ρβ

We conducted a Monte Carlo simulation as a follow-up to the analytical results. We implemented

1,000 replications with number of groups J ¼ 30 and group size Nj ¼ 30 for all groups for each con-

dition and then calculated the empirically derived ra and rb values. We manipulated two factors

that, based on the derivations in the previous section, affect ra and rb: (a) the variability of group

intercepts and slopes as indicated by T and (b) the extent to which groups differ in averages on the

predictor variables. We generated the outcome variable as normal with unit variance when condi-

tioned on the predictors and regression coefficients,

yijjxij; βj � N x
0

ijβj; 1
� 	

: ð21Þ

In addition, we considered two scenarios for xij and the between-group predictor means �xj. The

first scenario reflected the circumstance where groups did not differ in the population on predictor

averages,

xijj�xj � N3 �xj;
0 0 0

0 1 0

0 0 1

2
4

3
5

0
@

1
A; �xj � N3

1

0

0

2
4
3
5; 0 0 0

0 0 0

0 0 0

2
4

3
5

0
@

1
A: ð22Þ

That is, �xj was assumed to originate from a population with constant values in each group where

the first element equals 1 to represent the intercept and, consequently, all predictor variance is attrib-

uted to within-group differences. The second scenario for xij and �xj incorporates some between-

group predictor variance. Namely, the distributions for xij and �xj are

xijj�xj � N3 �xj;
4

5

0 0 0

0 1 0

0 0 1

2
4

3
5

0
@

1
A; �xj � N3

1

0

0

2
4
3
5; 1

5

0 0 0

0 1 0

0 0 1

2
4

3
5

0
@

1
A; ð23Þ

which reflects a circumstance where 20% of the variability in xij is due to between-group variability.

For both scenarios, the distribution of xij conditioned on �xj is trivariate normal.
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Also, we examined the effect of different values of T on ra and rb across three situations in which

we fixed the means of βj in the population to γ ¼ 0; 2�1; 2�1ð Þ and specified T so that βj is distrib-

uted as follows:

βj � N3

1

2

0

1

1

2
4
3
5;T

0
@

1
A: ð24Þ

The three scenarios for T are as follows:

T ¼ 1

2

1 0 0

0 0 0

0 0 0

2
4

3
5;T ¼ 1

2

0 0 0

0 1 0

0 0 1

2
4

3
5;T ¼ 1

2
I3; ð25Þ

where I3 denotes a three-dimensional identity matrix. In other words, the first scenario for T repre-

sents the case of no variability in slopes, the second scenario includes between-group variance only

in group slopes, and the third scenario considers variability in intercepts and slopes.

Table 1 reports values for r̂a and r̂b, which are averages of Monte Carlo estimates of ra and rb
from 1,000 replications for the six conditions full crossing (a) two conditions for between-group pre-

dictor differences and (b) three conditions for intercept and slope differences. For the sake of com-

pleteness, Table 1 also reports results regarding the likelihood ratio test (LRT) of non-zero t11 as

well as �l1 and �l2—average least squares slope reliabilities for the two simulated continuous predic-

tors (we describe results pertaining to LRT and reliabilities later in our article).

For scenario 1 for T and scenario 1 for xij, all between-group variance is attributed to variability

in intercepts only and groups are equivalent on the predictors. Table 1 reports Monte Carlo values of

r̂a ¼ 0.238 and r̂b ¼ 0.004 and their theoretical counterparts are quite similar: ra ¼ 0.242 and rb ¼
0.000. Introducing group predictor differences in scenario 2 results in a larger r̂a ¼ 0.287, which

corresponds closely with the theoretical value of ra ¼ 0.292.

The second T scenario includes group slope variance and no intercept variance with average

Monte Carlo values of r̂a ¼ 0.003 and r̂b ¼ 0.373 for the xij scenario 1. The value of r̂a ¼
0.003 mirrors the analytic value of ra ¼ 0.000 and demonstrates that rb accounts for variance that

is orthogonal to the variance captured by ra.

Results regarding scenario 2 for xij demonstrates another contribution of our study, which is that

ra includes variance attributed to slopes only when groups differ in average predictor values. The

Table 1. Monte Carlo Simulation Results: Average ra and rb for Different Scenarios Manipulating Between-
Group Predictor Differences and Intercept and Slope Differences.

T Scenarios

xij Scenario 1 xij Scenario 2

r̂a r̂b ra rb LRT �l1
�l2 r̂a r̂b ra rb LRT �l1

�l2

1 .238 .004 .242 .000 .012 .097 .096 .287 .004 .292 .000 .010 .098 .103
2 .003 .373 .000 .400 1.000 .922 .920 .114 .297 .117 .320 1.000 .905 .904
3 .160 .312 .161 .333 1.000 .921 .922 .254 .252 .259 .267 1.000 .904 .903

Note: r̂a and r̂b are empirically derived Monte Carlo estimates of the theoretical values ra and rb using 1,000 replications. xij

Scenario 1 corresponds to no between-group differences, and scenario 2 represents the case of 20% variance in predictors
attributed to group membership. The T scenarios reflect scenario 1: only intercept differences, scenario 2: only slope differ-
ences, and scenario 3: intercept and slope differences. ‘‘LRT’’ denotes the probability of rejecting the likelihood ratio test
where the observed deviance was compared with a w2

5 critical value (there are 5 degrees of freedom: two slope variances,
one covariance between random slopes, and two covariances between slopes and the random intercept). The full model
‘‘LRT’’ denotes Type I error rates for T scenario 1 and statistical power for T scenarios 2 and 3. �l1 and �l2 are the average
least squares slope reliabilities for the two simulated continuous predictors.
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second scenario for xij represents a situation where 20% of predictor variability is attributed to group

mean differences, and in this case r̂a ¼ 0.114 (with a theoretical value of ra¼ 0.117), which reflects

the variance in criterion means that is attributed to slope differences. Table 1 also shows a decrease

in rb in the case of group differences in the predictors with r̂b ¼ 0.297 and rb ¼ 0.320.

In the third and final T scenario, groups differ in both intercepts and slopes with average Monte

Carlo values of r̂a ¼ 0.160 and r̂b ¼ 0.312 with corresponding theoretical values of ra ¼ 0.161 and

rb¼ 0.333, respectively. As expected, introducing group predictor heterogeneity in scenario 2 for xij

results in a larger r̂a ¼ 0.254 and a smaller r̂b ¼ 0.252. This third T scenario further demonstrates

that ra and rb capture two different sources of criterion variance.

In short, Monte Carlo simulation results confirmed the analytical evidence presented earlier: ra and

rb are orthogonal and capture two different sources of between-group criterion variance. In addition,

ra includes variance attributed to slopes only when groups differ in average predictor values.

Implications for Substantive Research: Different Conclusions Based on
the Use of ρα Versus ρβ

Mathieu et al. (2012, Table 1) reported summary statistics for a set of articles addressing cross-level

interaction effects. Mathieu et al. reported data for Studies 1 and 2 (based on Chen, Kirkman, Kanfer,

Allen, & Rosen, 2007), Study 3 (based on Hofmann, Morgeson, & Gerras, 2003), Studies 4 and 5 (based

on Liao & Rupp, 2005), and Studies 6 and 7 (based on Mathieu, Ahearne, & Taylor, 2007). We used

those data from Mathieu et al. to compare and contrast the magnitude of rb to the traditional ICC ra.

Table 2 includes rb values, which we calculated for each study. Across the seven studies, rb ran-

ged from 0.00 to 0.111. Stated differently, group slope differences accounted for a range of 0.00% to

11.1% of the variance in the outcome variables, and the average variance attributed to between-

group differences in slopes was 3.5%.

Table 2 also shows that for 2 of the 7 studies, the variance attributed to slope differences was larger

than the variance associated with differences in outcome variable means as assessed by the traditional

ICC (i.e., rb > ra). The values of ra and rb have implications for how researchers proceed with data

analysis and model selection. Specifically, those who base judgment about the need to use multilevel

modeling solely on ra are likely to mistakenly ignore important between-group slope variance. For

instance, consider Study 1 in Table 2. For Study 1, ra ¼ 0.00 whereas rb ¼ 0.057, which implies that

groups do not differ in averages on the outcome variable and 5.7% of criterion variable variance is

attributed to group slope differences. Consequently, researchers who rely solely on ra may incorrectly

conclude that it is appropriate to use OLS regression as opposed to multilevel modeling. Moreover,

this decision would also result in not estimating cross-level interaction effects.

An additional consideration regarding results in Table 2 concerns the magnitude of rb. Specifically,

many of the values may seem to be small—perhaps leading to the conclusion that the search for cross-

level interaction effects may be futile. However, this conclusion is not warranted for the following rea-

sons. First, LeBreton and Senter (2008) argued that ICC values of about .05 represent a small to

medium effect and ‘‘values as small as .05 may provide prima facie evidence of a group effect’’ (p.

838). Reinforcing this recommendation, evidence made available recently demonstrates that the effect

size guidelines reported by Cohen (1988) are overestimates of the types of effects usually reported in

management and organizational studies research (Bosco, Aguinis, Singh, Field, & Pierce, in press).

Second, ICC values should be considered within specific contexts because small observed effects may

result from inauspicious designs, studies that involve phenomena leading to obscure consequences,

and studies that challenge fundamental assumptions (Cortina & Landis, 2009). Third, there are numer-

ous methodological and statistical artifacts that decrease observed effect sizes compared to their true

population counterparts, and this is particularly true for interaction effects (Aguinis, 2004; Aguinis,

Beaty, Boik, & Pierce, 2005; Aguinis & Stone-Romero, 1997). Accordingly, it is likely that in many
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cases, and due to methodological and statistical artifacts, observed variability in slopes as indicated by

rb is actually larger in the population than has been estimated. Fourth, in some cases, small effect sizes

may be practically significant (Aguinis et al., 2010). Thus, when the phenomena of interest has impor-

tant implications for theory or practice, even small values for rb may be considered as an indication for

the need to assess particular cross-level interaction hypotheses.

Comparison of ρβ With Existing Tests and Statistics

Although the recommendation in most textbooks on multilevel modeling is to rely on the traditional

intraclass correlation ra and management and organizational studies researchers seem to follow this

recommendation, there are tests and indices described in the statistical and methodological literature

that researchers might employ for understanding the nature of group slope differences (LaHuis,

Hartman, Hakoyama, & Clark, 2014). However, rb offers a unique value-added contribution as

an index for how group variability in slopes translates to differences in the outcome variable yij.

Furthermore, rb provides researchers insight regarding the amount of variability that exists in yij due

to group differences in slopes and can guide researchers in the theory-based search for cross-level

moderators. As such, rb can be used to produce preliminary estimates of group slope differences

based on pilot data or exploratory analyses. Next, we compare and contrast rb to tests based on

model likelihood and statistics based on the variance of group slopes and reliability indices.

Table 2. Illustration of Differences Between Traditional (i.e., raÞ and Newly Derived Intraclass Correlation
(i.e., rb) as Indicators of Higher-Level Variability.

Study Variables ra rx t11 rb

1: Chen, Kirkman, Kanfer, Allen, and Rosen
(2007)

X: Leader-member exchange
W: Empowering leadership
Y: Individual empowerment

0.000 0.040 0.064 0.057

2: Chen et al. (2007) X: Individual empowerment
W: Team empowerment
Y: Individual performance

0.176 0.000 0.002 0.002

3: Hofmann, Morgeson, and Gerras (2003) X: Leader-member exchange
W: Safety climate
Y: Safety role definitions

0.000 0.409 0.210 0.111

4: Liao and Rupp (2005) X: Justice orientation
W: Org.-focus PJ climate
Y: Satisfaction with

organization

0.107 0.111 0.011 0.008

5: Liao and Rupp (2005) X: Justice orientation
W: Sup.-focus PJ climate
Y: Supervisor commitment

0.310 0.111 0.021 0.015

6: Mathieu, Ahearne, and Taylor (2007) X: Work experience
W: Empowering leadership
Y: Technology self-efficacy

0.000 0.022 0.000 0.000

7: Mathieu et al. (2007) X: Technology use
W: Empowering leadership
Y: Individual performance

0.326 0.037 0.114 0.066

Average 0.131 0.104 0.060 0.037

Note: ra ¼ traditional intraclass correlation, rx ¼ intraclass correlation for xij, t11 ¼ variance of b1j , and rb ¼ intraclass cor-
relation indexing the proportion of between-group variance in an outcome variable due to differences in slopes across
groups. Data source: Mathieu, Aguinis, Culpepper, and Chen’s (2012) Table 1, who calculated t11 after transforming the pre-
dictor and criterion to have unit variance. X: L1 predictor, W: L2 moderator, Y: L1 outcome, Org.-focus PJ: organization-
focused procedural justice, Sup.-focus PJ: supervisor-focused procedural justice.
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Likelihood Ratio Tests of Non-Zero t11

Researchers could employ LRTs to statistically evaluate whether group slopes differ. Specifically,

LRTs are defined as the difference between –2 log-likelihood values (–2LL) for a full and reduced

model. For the current context, –2LLnull represents a random intercepts model with nonrandom slopes

whereas –2LLfull allows group slopes to differ. LRTs use deviance as a test statistic where deviance¼
2LLfull – 2LLnull, which is asymptotically distributed as a w2 random variable (Aguinis et al., 2013).

It is possible to test the significance of adding a random slope to an existing random intercept

model with a chi-square distribution with 2 degrees of freedom (i.e., w2
1�a;2): one for the new random

slope and a second for the covariance between group slopes and intercepts. However, using w2
1�a;2 to

test for group slope differences is asymptotically too conservative. Specifically, Self and Liang

(1987) and Stram and Lee (1994) offered theoretical results showing that the preferred option is a

chi-square distribution that is a 50:50 mixture of w2
1�a;1 and w2

1�a;2 distributions. Additional research

has proposed a Monte Carlo procedure for comparing a calculated –2LL to an appropriate null dis-

tribution (Crainiceanu & Ruppert, 2004). Theoretical results hold for large sample sizes, but these

are only rarely observed in typical management and organizational studies research, as documented

by Mathieu et al.’s (2012) review.

An additional drawback is that the LRT test does not involve a meaningful effect size to assess the

extent to which group slopes differ. Namely, LRTs serve as an omnibus test for the presence or

absence of group slope differences and only provide researchers with guidance as to whether group

slopes might differ in the population. In contrast, rb quantifies the amount of group differences in yij

that is attributed to group differences in slopes. Consequently, in contrast to LRT, researchers can

use rb as an index concerning the effect size of group differences in slopes on yij.

We illustrate some of the aforementioned limitations regarding the use of null hypothesis signif-

icance testing to assess the presence of variability of slopes with data made available by Hofmann,

Griffin, and Gavin (2000). We refer to this particular illustration because their chapter and data set

are used by many instructors teaching multilevel modeling. In particular, a reanalysis of the Hof-

mann et al. data suggests a statistically significant slope variance with p < 10-6 for mood whereas

r̂b ¼ 0:003 (note that r̂a ¼ 0:770). In other words, rb seems to suggest that the variance in the out-

come attributed to group-based slope differences in mood is relatively small whereas employing an

LRT (with a Monte Carlo procedure using the LRTSim R function) indicates the slope differs from

zero (and it is very unlikely that it is zero). This apparent discrepancy in conclusions based on the

LRT, and rb is due to the fact that LRTs are tests that become more statistically powerful for larger

sample sizes. In contrast, rb is an effect size estimate that is independent of sample size. Specifi-

cally, the Hofmann et al. data set includes 1,000 observations (i.e., 50 groups and 20 individuals per

group), which results in a statistically powerful test to find non-zero differences in slopes—even if

they are small. On the other hand, rb indicates that the variance in the outcome attributed to these

slope differences is substantively small. In short, these results offer a good illustration regarding fun-

damental differences between null hypothesis statistical tests and effect size estimates as they per-

tain particularly to the assessment of slope variance across groups.

Finally, results included in Table 1 pertaining to LRT also offer additional insights regarding this

test in relationship with rb. Specifically, Table 1 includes results based on a comparison of a full

model with random intercepts and slopes to a model with only random intercepts. Statistical power

for the LRT (i.e., T scenarios 2 and 3) was 1.00 across the three scenarios for xij. Clearly, knowing

the precise amount of variance due to slope differences is more informative than concluding, across

all of these conditions, that such variance is unlikely to be zero. In addition, Table 1 shows that using

a critical value from a chi-square distribution with 5 degrees of freedom led to a statistically conser-

vative test as only 1.2% and 1.0% of replications were rejected in comparison to the true 5% rejec-

tion (i.e., a priori Type I error) level.
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Statistics Describing Group Slope Differences

There are additional strategies for interpreting the size and nature of group slope differences. These

include confidence intervals and reliability coefficients for group slopes.

First, the variance of slopes could be used to gauge the degree of group slope differences in the

population. Specifically, t11 is the variance of the slope random effect, and larger values imply

greater group-based differences. Furthermore, it is possible to use t11 to construct a confidence inter-

val or range of plausible values for group slopes in repeated sampling from the population (Rauden-

bush & Bryk, 2002). For instance, in larger samples it is possible to compute �10 � 2t11 to indicate

the approximately 95% range of slope values in the population. That is, larger plausible values

ranges are associated with greater group differences in slopes.

Confidence intervals involving t11 provide a practical understanding of group differences in the

population. However, t11 and any computed confidence intervals do not translate how variance in yij

is attributed to group differences in slopes. Specifically, t11 is on the metric of the relationship

between xij and yij rather than a metric for the variance of yij. Instead, rb is a function of t11 and

offers an index for translating observed slope differences into the degree to which group slope dif-

ferences contribute towards differences in yij.

As an additional approach, Raudenbush and Bryk (2002) described equations for estimating

the reliability of group slopes as an index for the extent to which groups differ in b1j, but not yij.

Specifically, the reliability of b1j across groups is defined as,

l1 ¼
1

J

XJ

j¼1

t11

t11 þ u1j

; ð26Þ

where J is the number of groups and u1j is the sampling error for b1j. Note that t11 þ u1j represents the

‘‘total variance’’ of b1j, so l1 represents the average proportion of true slope variability across J groups

and, more precisely, quantifies the proportion of variance in the least squares group slopes that are

attributed to true between-group slope differences. Although l1 is a valuable index, it does not indicate

how group slope differences relate to variability in yij. Furthermore, l1 provides information about a

single predictor only and does not yield information concerning the overall reliability of group slope

differences. In contrast, rb is an index of criterion variance attributed to group slope differences.

Referring back to Table 1, results offer additional insights regarding the reliability of slopes as an

index of slope variability in relationship with rb. For example, Table 1 shows that the average slope

reliability was approximately 0.1 in the absence of slope differences (i.e., T scenario 1) and 0.9 in the

presence of slope differences (i.e., T scenarios 2 and 3). Clearly, l1 and l2 provide an indication as

to the share of slope variance that is true rather than sampling error, but slope reliability does not

explicitly describe criterion variance attributed to slope differences.

Illustrative Data Set for Computing ρβ

We created a data set to illustrate the computation of rb. The data include the following simulated

variables: ‘‘1,’’ which is a column of 1s, ‘‘X1’’ (L1 predictor), ‘‘X2’’ (L2 predictor), and ‘‘Y’’ (cri-

terion). The R code we used for all calculations is included as a vignette in the documentation for the

icc_beta R package, which can be freely downloaded through the CRAN. We make this code and

data available so that they can be used for calculating rb for substantive as well as instructional pur-

poses. Note that the code can be used in situations including any number of predictors. The data were

simulated using the same code as for the simulation with the population model defined as:

yijjxij; βj � N x
0

ijβj; 1
� 	

ð27Þ
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xijj�xj � N3 �xj;
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Implementation of the R code using the illustrative data set leads to the following results and con-

clusions (note that we used a random-intercepts model to calculate ra). First, r̂a ¼ 0.033, which

implies that 3.3% of the variability in the criterion is associated with group mean differences. Sec-

ond, we estimated a random-slopes multilevel model that included both X1 and X2 as predictors of

Y. Results show that r̂b ¼ 0.075, which means that 7.5% of the variability in Y is accounted for by

group differences in slopes. In conclusion, the sole reliance on ra, which is small, would have led to

the conclusion that multilevel modeling may not be necessary and, consequently, a missed oppor-

tunity to investigate cross-level interaction effects. In contrast, the result based on rb that about

7% of variance is attributed to slope differences across groups leads to the conclusion that there

is a need to understand which particular higher-level moderators explain this variance.

Discussion

There is an increased awareness regarding the need to understand the nature of cross-level interac-

tion effects—the extent to which relationships at a lower-level of analysis (e.g., two individual-level

variables) vary across higher-level units (e.g., groups, units, firms). This need is central for making

progress in modern-day contingency theories, person-environment fit models, and any theory that

considers outcomes to be a result of combined influences emanating from different levels of anal-

ysis. In addition, a better understanding of cross-level interaction effects offers information that

practitioners can use in planning and implementing interventions in specific contexts because such

knowledge allows them to anticipate the relative effectiveness of such interventions given certain

contextual (i.e., higher-level) factors. Thus, knowledge about cross-level interaction effects allows

practitioners to enhance the effectiveness of interventions. Because of these reasons, there has been

an exponential growth in the literature on multilevel modeling (Aguinis, Pierce, Bosco, & Muslin,

2009; Mathieu et al., 2012), which is a data-analytic approach that considers and models data

dependence and such cross-level interaction effects explicitly.

In spite of the increased diversity and complexity in the methodological literature, there is a

common challenge that permeates all types of multilevel modeling: the need to understand the

degree of variability of a lower-level relationship across higher-order units, processes, or contexts.

Although theory-based considerations initially dictate whether multilevel modeling may be the

preferred data-analytic approach, the consistent recommendation in the methodological literature

is that researchers first compute the intraclass correlation, ra, as a criterion in deciding whether to

use multilevel modeling (e.g., Aguinis et al., 2013). Not surprisingly, researchers use this criterion

for deciding whether the use of multilevel modeling is appropriate. If the intraclass correlation is

not sufficiently high, then multilevel modeling is not considered necessary and there is also not

sufficient justification for assessing cross-level interaction effect hypotheses. Inversely, multile-

vel modeling is the preferred approach if the intraclass correlation ra is sufficiently high. The rea-

son for this recommendation, which is offered in most major textbooks on multilevel modeling, is

that the intraclass correlation ra assesses the proportion of between-group variance relative to total

variance in an outcome variable, and therefore, it signals the presence of nonindependence in the

data structure.

Our article showed analytically and via simulation that the current conceptualization and estima-

tion of the intraclass correlation captures across-group variability due to intercept differences and
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only a portion of variability attributed to slope differences. Thus, the intraclass correlation ra is,

using psychometric terminology, a deficient index of dependence. In other words, across-group

variability may also exist due to slope differences across groups, but this is not reflected in the intra-

class correlation as currently conceptualized and calculated. In contrast, the newly derived intraclass

correlation rb is an index of proportion of variance in criterion scores due to group differences, but

the source of this variability is group difference in slopes.

We used data reported in several articles addressing substantive theories and research domains to

illustrate that using the traditional intraclass correlation ra as an index of group differences ignores

the variance attributed to group slope differences and reduces the total reported variance attributed

to group differences. In some cases, using ra as the sole criterion for understanding the degree of

across-group variability may lead researchers to miss an opportunity to study cross-level interaction

effects that, as noted by Mathieu et al. (2012), ‘‘lay at the heart of modern-day contingency the-

ories, person-environment fit models, and any theory that considers outcomes to be a result of com-

bined influences emanating from different levels of analysis’’ (p. 952).

There is an additional use for rb that has implications for future theory development.

Because rb is expressed in standardized metric, its value is not dependent on the particular

scales used in a particular study. Accordingly, similar to a Pearson’s correlation coefficient,

rb can be used in meta-analytic reviews, and such research can open up new lines of investi-

gation. For example, assume that a meta-analysis of the literature on the relationship between

job satisfaction and task performance results in a larger mean value for rb compared to the esti-

mate based on the relationship between job satisfaction and organizational citizenship behavior

(OCB). This result implies that there is greater cross-level heterogeneity for the satisfaction–

task performance relationship compared to the satisfaction-OCB relationship. Accordingly, this

result indicates that it would be more fruitful to conduct primary-level research investigating

cross-level moderating effects of the satisfaction–task performance compared to the

satisfaction-OCB relationship. Alternatively, conducting meta-analyses based on rb values can

also result in information that would be useful in terms of deciding to not search for cross-level

interaction effects in certain domains. Given the proliferation of management and organiza-

tional studies theories and the need to engage in theory pruning (Leavitt, Mitchell, & Peterson,

2010), using rb as an index of where one should not search for cross-level interaction effects

could be just as useful, or even more useful, than using it as an index of areas where such

effects are more likely to be found.

In terms of yet additional uses of rb, our discussion thus far focused on research designs in

which units are nested within collectives such as individuals within groups, groups within

firms, or firms within industries. However, rb can also be computed within the context of long-

itudinal designs where repeated measurements are collected for units (e.g., individuals, firms)

and time as well as time-varying predictors are included in the model. In terms of a multilevel

model conceptualization, the lower level refers to observations and the higher level to the units

(e.g., entrepreneurs, teams, firms) about which data have been collected over time. Referring

back to Equation 10, in these types of designs, within-unit variability is captured by yit � �yi

where i indexes units and t indexes time. rb can be particularly useful in studies adopting a

longitudinal designs because it quantifies variance in an outcome over time that is attributed

to unit-based differences in slopes. The presence of such variance can then lead to testing spe-

cific hypotheses about moderator variables that may account for slope differences.

Conclusion

ra and rb index different sources of variance in yij. Because ra and rb reflect two different sources of

group-based differences, we suggest that researchers contemplating the use of multilevel modeling, as
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well those who suspect nonindependence in their data structure, expand the decision criteria for using

such data-analytic approach to include both types of intraclass correlations. Continued use of ra as the

sole decision criterion may lead to the inappropriate use of data-analytic approaches that require inde-

pendence among observations and also lead to opportunity cost in terms of testing precise and specific

cross-level interaction effect hypotheses. In contrast, using both ra and rb improves the decision-

making procedures for using multilevel modeling and assessing of cross-level interaction effects.

Appendix

Decomposition of Sample Variance S2 and Derivation of Expected Between-Group

Variance E S2
BjX


 �
, Expected Within-Group Variance E S2

W jX

 �

, and Expected Sample

Variance E S2jXð Þ
Decomposition of S2. The sample variance S2 can be partitioned as follows:

S2 ¼ 1

N � 1

XN

i¼1

yij � �y
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;

ðA1Þ

where
PNj

i¼1

yij � �yj

� �
¼ 0 was used to obtain the last equality.

Derivation of E S2
BjX


 �
. Note that S2

B can be written as follows:

S2
B ¼

1
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XJ
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Consequently, E S2
BjX


 �
is defined as

E S2
BjX


 �
¼ 1
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j¼1

NjE �y2
j jXj

� 	
� N

N � 1
E �y2jX
� �

ðA3Þ

where Xj is an Nj � pþ 1ð Þ matrix of predictors for group j. The following material derives expres-

sions for both expectations in Equation A3.

First, the average criterion for group j is

�yj ¼
1

Nj

XNj

i¼1

x
0

ijβj þ rij

� 	
¼ �x

0

jβj þ �rj ðA4Þ

where �x
0
j ¼ �xj0; �xj1; . . . ; �xjp

� �
is a vector of predictor averages for group j. The expected value of

group j’s criterion mean is E �yjjXj

� �
¼ �x

0
jγ and the variance of �yj given Xj is Var �yjjXj

� �
¼

�x
0
jT�xj þ s2=Nj. Consequently, E �y2

j jXj

� 	
is
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E �y2
j jXj

h i
¼ Var �yjjXj

� �
þ E �yjjXj

� �
 �2¼ �x
0

j Tþ γγ
0

� 	
�xj þ

s2

Nj

: ðA5Þ

Furthermore, the first sum in Equation A3 is

1

N � 1

XJ

j¼1

NjE �y2
j jXj

� 	
¼ 1

N � 1

XJ

j¼1

Nj �x
0

j Tþ γγ
0

� 	
�xj þ

s2

Nj

� �

¼ 1

N � 1

XJ

j¼1

Njtr Tþ γγ
0

� 	
�xj�x

0

j

h i
þ J

N � 1
s2:

ðA6Þ

For E �y2jXð Þ, note that E �y2jXð Þ ¼ Var �yjXð Þ þ E �yjXð Þ½ �2 where E �yjXð Þ is defined as

E �yjXð Þ ¼ 1

N

XJ

j¼1

NjE �yj

��X� �
¼ 1

N

XJ

j¼1

Nj�x
0

jγ ¼ �x
0
γ ðA7Þ

because �x ¼ 1
N

PJ
j¼1

Nj�xj. The law of total variance can be used to find an expression for Var �yjXð Þ as

Var �yjXð Þ ¼ E Var �yjX;βj

� 	���Xh i
þ Var E �yjX; βj

� 	
jX

� 	

¼ E Var
1

N

X
i

yij

�����X;βj

 !�����X
" #

þ Var E
1

N

X
i

yij

�����X; βj

 !�����X
 !

¼ E
s2

N

����X
� �

þ Var
1

N

X
i

x
0

ijβj

�����X
 !

¼ s2

N
þ Var

1

N

XJ

j¼1

XNj

i¼1

x
0

ijβj

�����X
 !

¼ s2

N
þ 1

N 2

XJ

j¼1

N 2
j �x

0

jT�xj

¼ 1

N 2

XJ

j¼1

N 2
j tr T�xj�x

0

j

h i
þ s2

N

ðA8Þ

where the assumption of independence of βj and the fact that
PNj

i¼1

x
0
ij ¼ Nj�x

0
j was used to obtain the

second to last equality. Consequently,

E �y2jX

 �

¼ 1

N 2
tr T

XJ

j¼1

N2
j �xj�x

0

j

" #
þ s2

N
þ tr γγ

0
�x�x

0
h i

: ðA9Þ

Therefore, E S2
BjX


 �
is defined as

E S2
BjX


 �
¼ 1

N � 1

XJ

j¼1

Njtr Tþ γγ
0

� 	
�xj�x

0

j

h i
� 1

N

XJ

j¼1

N2
j tr T�xj�x

0

j

h i
� Ntr γγ

0
�x�x

0
h i" #

þ J � 1

N � 1
s2

¼ 1

N � 1

XJ

j¼1

Njtr 1� Nj

N

� �
Tþ γγ

0
� �

�xj�x
0

j

� 

� N

N � 1
tr γγ

0
�x�x

0
h i

þ J � 1

N � 1
s2:

ðA10Þ
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Derivation of E S2
W jX


 �
. Note that E S2

W jX

 �

can be written as

E S2
W jX


 �
¼ E

1

N � 1

XJ

j¼1

XNj

i¼1

yij � �yj

� �2

�����X
" #

¼ 1

N � 1

XJ

j¼1

XNj

i¼1

E yij � �yj

� �2
���Xh i

¼ 1

N � 1

XJ

j¼1

XNj

i¼1

E E yij � �yj

� �2
���X;βj

h i���Xn o
;

ðA11Þ

where the last equality was obtained using the law of iterated expectations. Squaring yij � �yj implies

that

yij � �yj

� �2¼ xij � �xj

� �0
βjβ

0

j xij � �xj

� �
þ rij � �rj

� �2þ2 xij � �xj

� �0
βj rij � �rj

� �
: ðA12Þ

Accordingly, the interior expectation in Equation A11 is

E yij � �yj

� �2
���X;βj

h i
¼ xij � �xj

� �0
βjβ

0

j xij � �xj

� �
þ E rij � �rj

� �2
���X; βj

h i
¼ xij � �xj

� �0
βjβ

0

j xij � �xj

� �
þ s2 Nj � 1

Nj

� � ðA13Þ

because the rij are independent with E rijri
0
jjX; βj

� 	
¼ 0 for all i 6¼ i

0
and,

E rij � �rj

� �2jX; βj

h i
¼ E

Nj � 1

Nj

rij �
1

Nj

X
i
0 6¼i

ri
0
j

0
@

1
A

2������X; βj

2
4

3
5 ¼ Nj � 1

Nj

� �2

E r2
ijjX; βj

� 	

þ 1

N 2
j

X
i
0 6¼i

E r2
i
0
j
jX; βj

� 	
¼ Nj � 1

Nj

� �2

s2 þ 1

N 2
j

X
i
0 6¼i

s2

¼ Nj � 1

Nj

� �2

s2 þ Nj � 1

N2
j

s2 ¼ Nj � 1

Nj

s2:

ðA14Þ

Accordingly,

E S2
W jX


 �
¼ 1

N � 1

XJ

j¼1

XNj

i¼1

E xij � �xj

� �0
βjβ

0

j xij � �xj

� �
þ Nj � 1

Nj

s2

����X
� 


¼ 1

N � 1

XJ

j¼1

XNj

i¼1

xij � �xj

� �0
Tþ γγ

0
� 	

xij � �xj

� �
þ 1

N � 1

XJ

j¼1

XNj

i¼1

Nj � 1

Nj

s2

¼ 1

N � 1

XJ

j¼1

XNj

i¼1

tr Tþ γγ
0

� 	
xij � �xj

� �
xij � �xj

� �0n o
þ N � J

N � 1
s2

¼ tr Tþ γγ
0

� 	XJ

j¼1

XNj

i¼1

xij � �xj

� �
xij � �xj

� �0
N � 1

( )
þ N � J

N � 1
s2

¼ tr Tþ γγ
0

� 	XJ

j¼1

X
0

cjXcj

N � 1

( )
þ N � J

N � 1
s2

¼ tr Tþ γγ
0

� 	 X
0

cXc

N � 1

� 

þ N � J

N � 1
s2

ðA15Þ
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where X
0

cjXcj ¼
PNj

i¼1

xij � �xj

� �
xij � �xj

� �0
, which by definition implies that Xcj is a matrix of group-

mean centered predictors for group j with zeroes for the intercept, and X
0

cXc ¼
PJ
j¼1

X
0

cjXcj is the

group-mean centered sums of squared predictors across all groups.

Derivation of E S2jXð Þ. This section confirms the results by showing that E S2jXð Þ ¼ E S2
BjX

� �
þ

E S2
W jX

� �
. Note that S2 can be written as

S2 ¼ 1

N � 1

XJ

j¼1

XNj

i¼1

yij � �y
� �2¼ 1

N � 1

XJ

j¼1

XNj

i¼1

y2
ij �

N

N � 1
�y2: ðA16Þ

Accordingly, the expected sample variance is

E S2jX
� �

¼ 1

N � 1

XJ

j¼1

XNj

i¼1

E y2
ijjX

� 	
� N

N � 1
E �y2jX
� �

: ðA17Þ

By definition, E y2
ijjX

� 	
¼ Var yijjxij

� �
þ E yijjxij

� �
 �2
. We can show that E yijjxij

� �
¼ x

0
ijγ and Var

yijjxij

� �
¼ x

0
ijTxij þ s2 ¼ tr Txijx

0
ij

h i
þ s2. Using the previous results concerning E �y2jXð Þwe see that,

S2jX
� �

¼ 1

N � 1

XJ

j¼1

XNj

i¼1

tr Tþ γγ
0

� 	
xijx

0

ij

h i
þ N

N � 1
s2

� N

N � 1

1

N 2

XJ

j¼1

N2
j tr T�xj�x

0

j

h i
þ tr γγ

0
�x�x

0
h i

þ s2

N

" #

¼ tr Tþ γγ
0

� 	PJ
j¼1

PNj

i¼1 xijx
0
ij

N � 1

( )
þ s2 � 1

N � 1

1

N

XJ

j¼1

N2
j tr T�xj�x

0

j

h i
� N

N � 1
tr γγ

0
�x�x

0
h i

¼ tr Tþ γγ
0

� 	 X
0
X

N � 1

� 

þ s2 � 1

N � 1

1

N

XJ

j¼1

N2
j tr T�xj�x

0

j

h i
� N

N � 1
tr γγ

0
�x�x
0

h i
ðA18Þ

Note that by definition, X
0
X ¼

PJ
j¼1

PNj

i¼1

xijx
0
ij ¼

PJ
j¼1

X
0

jXj. Let 1Nj
be a Nj vector of 1s and note that

Xcj ¼ Xj � 1Nj
�x
0
j and X

0

cj1Nj
¼ 0. Accordingly, adding and subtracting 1Nj

�x
0
j implies that X

0
X can be

further partitioned as

X
0
X ¼

XJ

j¼1

X
0

jXj ¼
XJ

j¼1

Xcj þ 1Nj
�x
0

j

� 	0
Xcj þ 1Nj

�x
0

j

� 	
¼
XJ

j¼1

X
0

cjXcj þ
XJ

j¼1

Nj�xj�x
0

j: ðA19Þ

Substituting the result from A19 into A18 confirms that E S2jXð Þ ¼ E S2
BjX

� �
þ E S2

W jX
� �

,

E S2jX
� �

¼ tr Tþ γγ
0

� 	X
0

cXc þ
PNj

i¼1 Nj�xj�x
0
j

N � 1

( )

þ s2 � 1

N � 1

1

N

XJ

j¼1

N 2
j tr T�xj�x

0

j

h i
� N

N � 1
tr γγ

0
�x�x

0
h i

¼ E S2
BjX

� �
þ E S2

W jX
� �

:

ðA20Þ
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Hülsheger, U. R., Alberts, H. J. E. M., Feinholdt, A., & Lang, J. W. B. (2013). Benefits of mindfulness at work:

The role of mindfulness in emotion regulation, emotional exhaustion, and job satisfaction. Journal of

Applied Psychology, 98, 310-325.

Kenny, D. A., & Judd, C. M. (1996). A general procedure for the estimation of interdependence. Psychological

Bulletin, 119, 138-148.

Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models.

Psychological Methods, 8, 115-128.

Kim, E., Bhave, D. P., & Glomb, T. M. (2013). Emotion regulation in workgroups: The roles of demographic

diversity and relational work context. Personnel Psychology, 66, 613-644.

LaHuis, D. M., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2014). Explained variance measures for

multilevel models. Organizational Research Methods, 17, 433-451.

Leavitt, K., Mitchell, R. R., & Peterson, J. (2010). Theory pruning: Strategies to reduce our dense theoretical

landscape. Organizational Research Methods, 13, 644-667.

LeBreton, J. M., & Senter, J. L. (2008). Answers to twenty questions about interrater reliability and interrater

agreement. Organizational Research Methods, 11, 815-852.

Liao, H., & Rupp, D. E. (2005). The impact of justice climate and justice orientation on work outcomes:

A cross-level multifoci framework. Journal of Applied Psychology, 90, 242-256.

Longford, N. (1993). Random coefficient modeling. Oxford, UK: Clarendon.

Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the power to

detect cross-level interaction effects in multilevel modeling. Journal of Applied Psychology, 97, 951-966.

Mathieu, J., Ahearne, M., & Taylor, S. R. (2007). A longitudinal cross-level model of leader and salesperson

influences on sales force technology use and performance. Journal of Applied Psychology, 92, 528-537.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods

(2nd ed.). Thousand Oaks, CA: Sage Publications.

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological

Review, 15, 351-357.

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York, NY: Wiley.

Self, S. G., & Liang, K. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio

tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605-610.

Short, J. C., Ketchen, D. J., Bennett, N., & du Toit, M. (2006). An examination of firm, industry, and time

effects on performance using random coefficients modeling. Organizational Research Methods, 9, 259-284.

Aguinis and Culpepper 175

 at INDIANA UNIV on February 27, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel

modeling (2nd ed.). Thousand Oaks, CA: Sage.

Stram, D., & Lee, J.W. (1994). Variance components testing in the longitudinal mixed effects model.

Biometrics, 50, 1171-1177.

Takeuchi, R., Chen, G., & Lepak, D. P. (2009). Through the looking glass of a social system: Cross-level effects

of high-performance work systems on employees’ attitudes. Personnel Psychology, 62, 1-29.

Taylor, P. J., Li, W. D., Shi, K., & Borman, W. C. (2008). The transportability of job information across coun-

tries. Personnel Psychology, 61, 69-111.

Uy, M. A., Foo, M. D., & Aguinis, H. (2010). Using experience sampling methodology to advance entrepre-

neurship theory and research. Organizational Research Methods, 13, 31-54.

Author Biographies

Herman Aguinis (http://mypage.iu.edu/~haguinis) is the John F. Mee Chair of Management and Founding

Director of the Institute for Global Organizational Effectiveness in the Kelley School of Business, Indiana Uni-

versity. His multi-disciplinary, multi-method, and multi-level research addresses human capital acquisition,

development, and deployment, and research methods and analysis. He has published five books and more than

120 articles in refereed journals. He is a Fellow of the Academy of Management, former editor-in-chief of

Organizational Research Methods, and received the 2012 Academy of Management Research Methods Divi-

sion Distinguished Career Award for lifetime contributions.

Steven Andrew Culpepper (http://publish.illinois.edu/sculpepper/) is an assistant professor in the Department

of Statistics at the University of Illinois at Urbana-Champaign. He completed a doctorate in educational psy-

chology from the University of Minnesota in 2006. His research focuses on statistical methods in the social

sciences and includes the development of new methodologies, evaluation of existing procedures, and applica-

tion of novel statistical techniques to substantive questions in demography, education, management, and

psychology.

176 Organizational Research Methods 18(2)

 at INDIANA UNIV on February 27, 2015orm.sagepub.comDownloaded from 

http://mypage.iu.edu/~haguinis
http://publish.illinois.edu/sculpepper/
http://orm.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


