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Abstract. Team research typically assumes that team performance is normally distributed:
teams cluster around average performance, performance variability is not substantial, and few
teams inhabit the upper range of the distribution. Ironically, although most team research and
methodological practices rely on the normality assumption, many theories actually imply non-
normality (e.g., performance spirals, team composition, team learning, punctuated equilibrium).
Accordingly, we investigated the nature and antecedents of team performance distributions by
relying on 274 performance distributions including 200,825 teams (e.g., sports, politics, fire-
fighters, information technology, customer service) andmore than500,000workers. First, regard-
ing their overall nature, only 11% of the distributions were normal, star teams are much more
prevalent than predicted by normality, the power law with an exponential cutoff is the most
dominant distribution among nonnormal distributions (i.e., 73%), and incremental differentia-
tion (i.e., differential performance trajectories across teams) is the best explanation for the emer-
gence of these distributions. Second, this conclusion remained unchanged after examining
theory-based boundary conditions (i.e., tournament versus nontournament contexts, perform-
ance as aggregation of individual-level performance versus performance as a team-level con-
struct, performance assessed with versus without a hard left-tail zero, and more versus less
sample homogeneity). Third, we used the team learning curve literature as a conceptual frame-
work to test hypotheses and found that authority differentiation and lower temporal stability are
associatedwith distributionswith larger performance variability (i.e., a greater proportion of star
teams).Wediscuss implications for existing theory, future researchdirections, andmethodologi-
cal practices (e.g., need to check for nonnormality, Bayesian analysis, outliermanagement).
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Introduction
Team research relies on the assumption that team per-
formance is normally distributed. If this is true, the
majority of teams would cluster around the average
level of team performance, performance variability is
not substantial, and relatively few teams inhabit the
upper range of the distribution. In contrast to this typ-
ical normality assumption, several theories currently
used in teams research refer to mechanisms that lead
to the formation of nonnormal distributions (e.g.,
performance spirals (Lindsley et al. 1995); team com-
position theories (Mathieu et al. 2014); team learning
(Argote and Epple 1990)). In fact, foundational

theories of team performance such as the input-medi-
ator-output-input (IMOI) model (Ilgen et al. 2005) sug-
gest that team performance is highly influenced by
processes that lead to major advantages for some
teams that continue to build and would lead to the
formation of nonnormal distributions. An empirical
finding challenging the normality assumption would
indicate a need to understand the generative mecha-
nisms that create these distributions that would lead
to adjustments in several team theories. For example,
theories regarding team learning (Luan et al. 2016)
currently do not explain how the possibility of a large
proportion of star teams would impact team decisions
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regarding the choice of external referents (Argote and
Ingram 2000). To clarify, we use a prevalent definition
for teams as “small groups of interdependent individ-
uals who share responsibility for outcomes” (Hollen-
beck et al. 2012, p. 82).

From a methodological standpoint, findings dem-
onstrating the nonnormal nature of team performance
distributions can change how past team research is
interpreted and future team research is conducted.
Specifically, under the assumption of normality, ex-
treme data points are considered uncommon anomalies
and can therefore be treated as undesirable errors.
Thus, outliers (i.e., star teams) are often deleted or the
entire data set is transformed to be able to better fit
the normal distribution to comply with general linear
model (GLM; ordinary least squares (OLS) regression,
structural equation modeling) assumptions such as
residual homogeneity (Aguinis et al. 2013, Becker et al.
2019). Thus, it is common practice to ignore (by deleting
them) or minimize (by using “robust” approaches that
transform and trim data) the impact that extreme obser-
vations have on substantive conclusions (Aguinis et al.
2013, Becker et al. 2019). In other words, “squeezing”
heavy-tailed distributions through data transformations
and manipulations to avoid violating statistical assump-
tions artificially reduces observed variability in team per-
formance scores and consequently artificially changes
the nature of the relation between team performance and
other variables. Importantly, the focus of our paper is on
the distribution level of analysis, not the team level of
analysis, and we therefore address the distribution as a
whole by focusing on generative mechanisms that lead
to different distribution shapes.

Theoretical Background, Research
Questions, and Hypotheses
Ironically, much of the theory underlying empirical
team research implies that team performance is not
normally distributed but instead follows a heavy-
tailed distribution. Next, we highlight how heavy-
tailed distributions differ from one another and why
team theory predicts these distributions.

Generating Mechanisms of Team Performance
Distributions
We focus on the seven distributions most commonly
observed in natural phenomena, which are grouped
into four categories (Sornette 2006, Joo et al. 2017): (a)
exponential tail (i.e., exponential and power law with
an exponential cutoff), (b) lognormal, (c) pure power
law, and (d) symmetric or potentially symmetric (i.e.,
normal or Gaussian, Poisson, or Weibull). Each distri-
bution category results from a distinct, unique, and
specific generating mechanism. As a visual aid, Fig-
ure 1 includes representations of each of the seven

distributions comprising the four categories. From a
more technical standpoint, Figure 1 also includes the
equations and parameters defining each distribution.

First, incremental differentiation is the generating
mechanism that results in exponential tail distributions
(i.e., exponential and power law with exponential cut-
off) due to processes that lead to output increments.
Under these distributions, star teams are common, but
diminishing returns lead to smaller variability between
star teams. With incremental differentiation, teams
with higher performance trajectories are predicted to
eventually rise to stardom, whereas those on lower tra-
jectories do not. For example, teams that can consis-
tently learn and adapt to changing conditions will
continue to compound their advantages over other
teams. These performance trajectories represent the lin-
ear increase in the average amount of output a team is
able to produce in a specified time period, resulting in
this specific type of distribution. Several team theories
support the idea that incremental differentiation takes
place such as team learning, which emphasizes the
importance of speed of learning on performance
(Edmondson et al. 2007). For instance, past research has
addressed the rate of learning and its differential impact
on team performance depending on factors such as the
level of experience of team members (Pisano et al. 2001)
and team stability (Reagans et al. 2005). Variance in
team learning leads to teams with higher performance
trajectories than others, which in turn would lead to the
emergence of an exponential tail distribution.

Second, in proportionate differentiation, both the ini-
tial level of performance for a team and the perform-
ance trajectory of the team lead to the generation of
lognormal distributions due to processes that lead to
output loops. Under these types of distributions, star
teams are common but variability between star teams
is not as great as under other heavy-tailed distribu-
tions. With proportionate differentiation, some teams
initially have higher levels of performance and con-
tinue with a high improvement rate, which results in
a high proportion of star teams. Much like self-fueling
performance spirals, teams that start off with a high
level of performance can leverage their prior perform-
ance to continue to build on that success (Lindsley
et al. 1995). For example, Banker et al. (1996) reported
that teams starting with a high initial level of perform-
ance continued to improve over time at a much higher
rate than others. Similarly, because of the existence of
negative performance spirals (Lindsley et al. 1995),
many teams set in motion processes that lead to a
very large pile of poorly performing teams that in
turn results in more star teams by comparison. Addi-
tionally, theories regarding team composition note
that the makeup of a team can lead to differences in
initial levels of performance and improvement in per-
formance trajectories moving forward (Mathieu et al.
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2014). Moreover, due to variability in general ability fac-
tors that exist both at the individual level (Devine and
Philips 2001, Bell 2007) and at the team level (Woolley
et al. 2010, Riedl et al. 2021), we would expect that differ-
ences in team composition will lead to some teams start-
ing at higher initial levels of performance and being able
to learn faster (Aggarwal et al. 2019), which together
lead to highly heterogenous levels of performance that
would result in a lognormal distribution.

Third, self-organized criticality drives the emergence
of pure power law distributions, such as the pareto distri-
bution (Pareto 1897), because of processes that lead to
unpredictable and extremely large output shocks. In
the presence of self-organized criticality, some teams
produce output until they reach a critical state, where
minor events trigger performance improvements that
range from small to very large. Under these

distributions, star teams are common and variability
even among star teams can be extremely large. This
mechanism is likely present when critical states are
achieved as a team accumulates components that are
interconnected. For instance, if a team is concurrently
working on multiple projects (i.e., components) that
are closely related to each other (i.e., interconnected),
a small breakthrough on one project can lead to break-
throughs on multiple projects simultaneously (Simonton
2003). This type of mechanism is part of the punctuated
equilibrium model (Gersick 1988) given that teams are
hypothesized to progress in a nonlinear fashion due to
periods of stasis followed by sudden drastic changes
(Chang et al. 2003). In addition, exogenous events may
also trigger a shock that impacts learning trajectories.
For instance, the global COVID-19 pandemic shifted
teamwork to be completed remotely, and some teams

Figure 1. Visual Representation of Seven Types of DistributionsWithin Four Categories with GeneratingMechanisms

Notes. Normal (µ� 100, σ � 1), power law with an exponential cutoff (α � 1.5, λ � 0.37), exponential (λ � 0.5), lognormal (µ � 4.5, σ � 1.5), Wei-
bull (β � 1.8, λ � 0.85), Poisson (µ � 2), and pure power law (α � 1.5). In each of the panels, except the one containing the Poisson distribution,
the x axis represents values of a continuous variable, whereas the y axis (“Density”) represents the likelihood of the continuous variable taking
on a given value or range of values. In the panel containing the Poisson distribution, the x axis represents values of a discrete variable, whereas
the y axis (“Mass”) represents the likelihood of the discrete variable taking on a given discrete value.
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were able to capitalize on this shock, whereas others
could not. In the presence of the generating mechanism
of self-organized criticality, we would expect power law
distributions to emerge.

Finally, homogenization drives the emergence of sym-
metric and potentially symmetric distributions (i.e., normal,
Weibull, and Poisson) due to processes that reduce dif-
ferences among teams’ output. Under these distribu-
tions, star teams would be uncommon because the
majority would cluster around the average. For exam-
ple, imitation learning or institutionalized norms dictated
by a governing body (e.g., drafting rules in the National
Football League) can reduce differences between teams
over time. However, there seem to be few team theo-
ries that point to this mechanism as being dominant.
For homogenization to occur, the initial starting point
of teams, their performance trajectory, and the critical
states discussed earlier would exert a smaller force in
creating team performance distributions compared
with the homogenization effect. In our study, we offer
empirical evidence that homogenization seems to be
the exception rather than the rule regarding the gener-
ation of team performance distributions.

As mentioned earlier, the heavy-tailed distributions
summarized in Figure 1 are uniquely associated with
specific mechanisms that are responsible for the emer-
gence of each category type (Mitzenmacher 2004, Kim
and Yum 2008, Andriani and McKelvey 2009, Clauset
et al. 2009, Amitrano 2012, Joo et al. 2017, Aguinis et al.
2018). For example, regarding proportionate differen-
tiation, there is a critical role of the initial team
performance value (Banerjee and Yakovenko 2010),
whereas incremental differentiation generates heavy-
tailed distributions where the initial value of perform-
ance is unimportant in determining the proportion
of teams that rise to stardom level. Additionally, al-
though both proportionate and incremental differen-
tiation generate heavy-tailed distributions through
differentiation in team performance trajectories, incre-
mental differentiation recognizes diminishing returns
that exist as teams continue to improve their perform-
ance. Thus, the presence of a specific distribution
shape provides evidence that the associated genera-
tive mechanism is the dominant one. However, these
generative mechanisms do not necessarily operate
in isolation. But, because of their distinct nature, a
dominant mechanism overrides the impact of others,
leading to the emergence of a specific distribution
shape. In sum, multiple mechanisms may exist simul-
taneously to influence the formation of the team
performance distribution shape, but it is possible to
identify the most dominant empirically (Clauset et al.
2009, Joo et al. 2017).

It is useful to understand how different structural
characteristics can potentially impact the emergence of
the varying distributions based on generativemechanisms

through an illustration based on team learning. If, for
instance, an environment exists where teams can easily
learn from one another, we would likely expect homoge-
nization to impact the shape of the distribution. With few
constraints impacting a team’s external learning
behavior, teams would naturally replicate the effective
processes and behaviors of the successful teams around
them leading to a clustering of teams around an aver-
age score—a normal distribution. In contrast, other
structural constraints such as the existence of patents or
copyrights that limit the access of external learning to
other teams are more likely to lead to heavy-tailed dis-
tributions. For example, if a team is able to innovate a
new process or technology that radically changes an
industry while also being protected by a patent, we
would expect a pure power law distribution to emerge
due to the mechanism of self-organized criticality. Like-
wise, we would expect another type of heavy-tailed distri-
butions (i.e., lognormal) in environments where external
learning is resource intensive, as teams that have the
resources necessary to engage in external learning behav-
iors would experience the feedback loop theorized in pro-
portionate differentiation. Essentially, teams that start
with adequate resources available to engage in external
learning would be able to improve performance that
would provide them with access to more resources to
engage in further external learning behaviors, and so on.

Given the aforementioned considerations, our first
goal is to assess empirically which distributions emerge
as dominant across a broad range of teams and context
types. Specifically, is team performance overall character-
ized by a normal or a heavy-tailed distribution? More-
over, going beyond a simple normal versus nonnormal
characterization, is there a best-fitting distribution that
arises as dominant for describing team performance?
In short, we pose the following question.

Research Question 1. Which distribution types best des-
cribe the overall nature of team performance?

Theory-Based Boundary Conditions for the
Shape of Team Performance Distributions
Even if team performance is overall not normally dis-
tributed, there is a need to examine potential boun-
dary conditions (Busse et al. 2017). Next, we consider
three potential boundary conditions specifically
derived from existing team theory.

Tournament-Like Environments. Although teams gen-
erally operate with some level of competition with
others, there are certain situations where collaboration
between teams is extremely low. This situation is typi-
cal in the context of winner-take-all tournaments, where
opportunities for collaboration can be limited. How-
ever, when teams are not in tournament-like conditions,
they often function in a context where between-team
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collaboration can be high (Le Roy and Fernandez 2015).
It is possible that the competitive nature of the team
context may serve as a condition that dictates the gen-
erative mechanisms present. Specifically, in situations
where team competition is low, homogenization may
actually be the dominant generative mechanism as
teams are able to work more collaboratively, leading
to more normal distributions. If, however, teams are in
a competitive environment, factors such as the starting
level of performance for the teams may create a heavy-
tailed distribution due to the proportionate differentia-
tion mechanism. These contexts rely heavily on a ranking
of teams to determine a “winner,” which puts teams in a
dichotomous choice between winning (and others los-
ing) or losing (and others winning) (Sundaresan and
Zhang 2012). Because of this, we believe that the com-
petitive environment where teams function may serve
as a boundary condition for the existence of heavy-
tailed performance distributions. Thus, we ask the fol-
lowing research question.

Research Question 2. Are heavy-tailed team performance
distributions prevalent regardless of whether teams exist in a
tournament-like environment?

Performance Aggregation. Based on the taxonomy of
Steiner (1972), there are multiple ways to consider
how team tasks are structured, which may also serve
as a boundary condition for the team performance dis-
tribution shape based on the generative mechanisms
present. Specifically, tasks can be additive (i.e., per-
formance is the sum of individual performance), con-
junctive (i.e., performance is constrained by the least
competent member of the group), disjunctive (i.e.,
performance depends on the most competent member
of the group), or complementary (i.e., performance is
determined through the interactions of teams to com-
plete the task). These situations can also be under-
stood as team performance conceptualized and
measured as an aggregation of individual-level per-
formance (e.g., additive tasks) or as a team-level con-
struct (e.g., complementary tasks). A question then is
whether these two different conceptualizations may
serve as a boundary condition. Although situations
characterized by an aggregation of individual-level
data could result in normal distributions due to the
presence of homogenization that occurs when averag-
ing out the performance of individuals on a team,
there is also the possibility that individual stars may
also drive the formation of heavy-tailed team distribu-
tions given their prevalence across teams (Aguinis
and O’Boyle 2014). Thus, we ask the following.

Research Question 3. Are heavy-tailed distributions
prevalent regardless of whether team performance is an
aggregation of individual-level performance or a team-level
construct?

Performance Constrained by a Hard Left-Tail Zero (i.e.,
Floor Effect). The presence of a hard left-tail of zero
when assessing performance may also be a boundary
condition of the shape of the performance distribu-
tion. In these situations, homogenization may exert an
additional influence over the shape of the team per-
formance distribution. In essence, the majority of
teams might cluster around the average and very few
teams would be able to inhabit the tails of the distribu-
tion. We therefore ask the following.

Research Question 4. Are heavy-tailed team performance
distributions prevalent regardless of whether team perform-
ance is constrained by a hard left-tail zero?

Next, going beyond our examination of (a) the over-
all pervasiveness of different types of team perform-
ance distributions (i.e., Research Question 1) and (b)
possible boundary conditions (i.e., Research Ques-
tions 2–4), we investigate structural characteristics of
teams hypothesized to covary with the heaviness of
the distributions’ tails (i.e., relative proportion of star
teams). In other words, we examine theory-based rea-
sons why some team performance distributions may
include greater performance variability and a greater
proportion of star teams compared with others.

Structural Characteristics of Teams as Predictors
of Heaviness of Distributions’ Tails
We used the team learning curve literature as an over-
arching conceptual framework to examine structural
characteristics of teams hypothesized to predict the
heaviness of the distributions’ tails (i.e., heavier tails
include a greater proportion of star teams). This is a
useful theoretical framework because it focuses on the
impact of team learning rate on outcomes (Edmond-
son et al. 2007). Specifically, differences in learning
rates across teams can lead to extreme performance dif-
ferences and therefore help us understand the emer-
gence of different distribution types (Bell et al. 2012). In
fact, the recursive nature of team learning, which is
based on incremental improvements in team perform-
ance, is directly related to incremental differentiation as
a mechanism that generates heavier tails (Knapp 2010).
Additionally, models of team learning recognize the
impact of the structure of the teams in influencing team
performance (Knapp 2010, Bell et al. 2012).

To accomplish our goal of identifying key structural
characteristics within a team learning curve frame-
work, we reviewed the literature on team typologies
(Cohen and Bailey 1997, Hollenbeck et al. 2012, Foster
et al. 2015). In their review, Hollenbeck et al. (2012)
described the three main characteristics of teams that
have played a prominent role in the creation of the
various classifications: authority differentiation, tem-
poral stability, and skill differentiation. This is a par-
ticularly relevant and appropriate taxonomy because
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each of the three characteristics is an integral part of
the team learning process and therefore consistent
with our use of team learning curve research as an
overarching conceptual framework (Kane et al. 2005,
Greer et al. 2011, Ren and Argote 2011). Given team
learning curve theorizing, incremental differentiation
implies that the performance trajectories differ such
that some teams linearly improve their performance
at a greater rate than others. Thus, it is the differential
trajectories of performance across teams that lead to
the generation of large variability and heavy tails. We
expect the structural characteristics in team contexts
to play an important role in the extent to which those
trajectories lead to large variability and a greater pro-
portion of star teams, as described next.

Authority Differentiation. Authority differentiation re-
lates to the centrality of decision-making power
within a team (Hollenbeck et al. 2012). Contexts that
are low in authority differentiation require teams
without a single leader with final authority in decision
making; rather, authority is spread out to multiple
team members. An example of this type of team con-
text are labor management committees, for which deci-
sions are only made after achieving a unanimous vote
of team members (Romme 2004). At the opposite end of
the spectrum, contexts high in authority differentiation
include teams with a single member who wields control
over decision making. Research on team learning curves
suggests that differential rates of team learning take
place based on how well teams are managed (Edmond-
son et al. 2007). Also, strong leadership on teams can
enhance coordination and can amplify the advantages
that some teams have over others (Greer et al. 2018).
Because the leader is tasked with making strategic deci-
sions for the team, the rate of team learning and the per-
formance trajectory should be greatly impacted by the
decisions of this single individual. Therefore, when a
single star performer in terms of both task and team
functions is on the team (Volmer and Sonnentag 2011),
team performance is positively impacted. As such,
when authority differentiation is high, teams that learn
to use these star performers in leadership roles are likely
to show higher performance trajectories.

Hypothesis 1. Greater authority differentiation is associ-
ated with greater team performance variability and distri-
butions with a greater proportion of star teams.

Temporal Stability. Temporal stability refers to the
stability of teams over time, both in the short term
(e.g., team membership changes during the course of
a single project) and in the long term (e.g., team stabil-
ity over the course of many projects; Hollenbeck et al.
2012). In team contexts characterized by high levels
of temporal stability, team membership remains

fairly constant over time. For example, at the National
Aeronautics and Space Administration (NASA), the
core engineering team remained largely intact over
the course of several of the Apollo missions (Fries
1992). In contrast, construction crews are low in
temporal stability because many workers rotate on
and off projects (Baiden et al. 2006). Although teams
that stay together longer typically demonstrate
higher average performance (Gibson and Gibbs 2006),
research has not yet addressed the impact of temporal
stability on the variability of team performance. The
external team learning literature (Bresman 2010) offers
insights regarding this issue. Specifically, the rate of
team learning and performance can be negatively
impacted by frequent changes in team membership
(Kane et al. 2005, Edmondson et al. 2007). However,
the negative impact on learning and performance can
often be mitigated through a number of means (e.g.,
incomingmember knowledge; Kane et al. 2005). Accord-
ingly, lower levels of team stability (i.e., more frequent
team member turnover) offer greater opportunities for
teams to generate varying levels of learning and per-
formance. In addition, low temporal stability has a nega-
tive impact on learning and subsequent performance
(Reagans et al. 2005). This is especially true for learning
that takes place externally to a team. When teams are
higher in temporal stability, they use time and resources
to learn from the successes and mistakes of other teams
(Bresman 2010), a likely situation in contexts where
teams have routinized their efforts due to spending lon-
ger periods of time together (Katz 1982). On the other
hand, teams in contexts characterized by low temporal
stability also have avenues through which they can
effectively learn from other teams even when faced with
the challenges of shorter team tenures (Vashdi et al.
2013), but not all teams will effectively pursue those ave-
nues, leading to differential performance trajectories
over time. It is the increase in variability of team per-
formance that we expect will lead to a greater propor-
tion of star teams in the performance distribution.

Hypothesis 2. Lower temporal stability is associated with
greater team performance variability and distributions with
a greater proportion of star teams.

Skill Differentiation. Skill differentiation refers to the
substitutability of individuals within a team based on
their learned skills and other personal characteristics
(Hollenbeck et al. 2012). For example, hospital operat-
ing teams are high in skill differentiation because sur-
geons, anesthesiologists, and nurses bring unique
skills that they have learned to help the team function
as a whole (Edmondson et al. 2001). In contrast,
accounting teams are comprised of individuals who
have learned similar skills and therefore work in a
context that is low in skill differentiation. We posit
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that contexts characterized by high skill differentia-
tion are likely to result in distributions with large vari-
ability and a greater proportion of star teams than
those characterized by low skill differentiation. Specif-
ically, specialization of individual members of teams
can lead to performance enhancements due to a
reduction in cognitive load, an increase in the avail-
able knowledge for a team, and a reduction of redun-
dancies that can hamper performance (Hollingshead
1998; Bell et al. 2012). Thus, we offer the follow-
ing hypothesis.

Hypothesis 3. Greater skill differentiation is associated
with greater team performance variability and distributions
with a greater proportion of star teams.

Finally, because little evidence exists that suggest
which of these characteristics would be most impor-
tant, we also investigated the relative importance of
each and offer the following research question.

Research Question 5. Are team performance variability
and the proportion of star teams in a distribution more
strongly associated with authority differentiation, temporal
stability, or skill differentiation?

Method
Data and Measures
Sample. Answering our five research questions and
testing our three hypotheses requires large data sets
because our level of analysis is not the team, but the team
distribution (i.e., samples of teams). Therefore, we first
identified possible archival sources of data using
Internet searches. These included data from academic
journal teams, political teams, and a wide range of
miscellaneous teams that do not fit into a single cate-
gory (e.g., pub trivia teams, video game teams, fire-
fighter teams). In addition, we relied on sports teams
because data collected over decades provide an excel-
lent source of many different measures of team per-
formance (Day et al. 2012). We gathered data from a
wide variety of sports teams that represent different
contexts and types of competitions to enhance gener-
alizability (Day et al. 2012). Additionally, we inten-
tionally used more than one type of performance
indicator when available (e.g., winning percentages,
goal differentials). Also, in some cases we gathered
data focusing on a more specific measure of team per-
formance (e.g., National Football League touch-
downs). However, we also included indicators of
overall team performance as well (e.g., winning per-
centage). In sum, the samples and variables we chose
to study are varied, cover multiple dimensions of
team performance, and reflect a wide range of team
types which allows for a better understanding of a
potentially generalized phenomenon.

To further enhance generalizability, we also col-
lected data from more traditional work environments
by reviewing articles published in the last three years.
Our goal was not to engage in a comprehensive data
collection effort; rather, our purpose was to gather
some additional evidence regarding the generalizabil-
ity and robustness of the results. We focused on three
journals that publish team-related research (i.e., Journal
of Management, Journal of Applied Psychology, and Acad-
emy of Management Journal). Moreover, we focused on
studies measuring team performance using objective
measures of team output. We identified 12 articles that
could serve as additional data sources and contacted
the authors to gather data on the performance score
and sample size for each team used in their studies
with the guarantee that we would not use the data for
any other purpose or share them with anyone else.
These efforts led to data sets from five research teams
frommultiple projects.

Overall, we collected performance data on a total of
274 performance distributions including 200,825
teams and more than 500,000 workers. Table 1 pro-
vides a detailed description of the sources and data
we used. This table is organized into groups and pro-
vides a description of the context of the various teams
including sports teams, academic journal teams, poli-
tics teams, and miscellaneous teams (e.g., firefighter
teams, information technology (IT) virtual teams, cus-
tomer service teams).1 Additionally, the samples
chosen represent variability regarding procedures
used to collect the data (i.e., not just convenience sam-
ples). For example, data were sampled mostly ran-
domly for general organizational teams by Rego et al.
(2019) and Van Bunderen et al. (2018); sales teams by
Ahearne et al. (2010); virtual supply chain teams by
Maynard et al. (2012); IT virtual teams by Maynard
et al. (2019); IT development teams by Rapp and
Mathieu (2019); and customer service teams by
Mathieu et al. (2006) and Rapp et al. (2016). Small
sample size is unlikely to serve as a competing explan-
ation for observed deviations from normality because
only 3 of the 274 distributions have a sample size
lower than 30. In the interest of full transparency and
replicability, we make all our data files available upon
request (except for those that were shared with us by
authors of published articles).

Structural Characteristics of Teams. Given our focus
on the distribution level of analysis, rather than indi-
vidually investigating each of the 200,825 teams in our
sample, we were interested in defining the structural
characteristics that define each type of team based on
the context in which they operate. As such, we fol-
lowed the procedure outlined in the Team Descriptive
Index Short Form (Lee et al. 2015) with minor changes
to indicate our focus on the context. We created a
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Table 1. Team Type, Number of Distributions, Average Number of Teams per Distribution (n), and Performance Measures

Team type
Number of
distributions n Performance measure Description of performance measure

Sports
Soccer teams 5 94 Tournament participation Number of times teams qualified to play in major

tournaments
1 77 Average goals scored Average number of goals scored per game over a

tournament
1 130 Goal differential Number of goals scored for – number of goals scored

against
NCAAF football teams 5 120 Rushing TDs Number of touchdowns scored on runs over a season

5 120 Passing TDs Number of touchdowns scored on passes over a season
1 119 Total Offense Average number of yards gained per game over a season

NHL teams 5 30 Goals scored Number of scored goals over a season
1 30 Goals per game Average number of goals scored per game over a season
1 30 Goals for/against ratio Number of goals scored for – number of goals scored

against
1 30 Team wins Number of wins achieved over a season
1 30 Power play percentage Number of power play goals/total number of power

plays
MLB teams 2 30 Home runs Number of homeruns a team makes over a season

2 30 RBIs Number of runs-batted-in over a season
1 30 Team slugging percentage (Total number of bases reached/total number of at bats)

over a season
1 30 Double plays Number of defensive plays of two put outs over a

season
1 30 Team batting average (Total number of hits/total number of at bats) over a

season
1 30 Defensive efficiency ratio Rate at which balls put into play are converted into outs

by a defense
ATP doubles tennis

teams
1 178 Total points Total points gained through advancing in competitions

Ragnar relay teams 18 312 Race time Total time to complete 200-mile race
ProCycling teams 3 18 World Tour stage wins Number of stage wins over a season
NCAA bowling teams 1 140 Team pin totals Number of pins knocked down over a season

Journals
Journal editorial teams 2 378 SAGE impact factor (Number of citations/number of articles published) over

two years
27 1,676 Scimago journal rank Average number of weighted citations received in a

given year by articles published over previous three
years

27 1,676 Scimago H index Number of articles (h) that have received at least h
citations

27 1,676 Scimago citations/document Average number of citations per document in the journal
Politics

State campaign teams 51 27 Campaign donations Total dollars donated over the course of a campaign
U.S. Congress 2 22 Reported bills % Number of bills passed/total bills introduced in

committees
Miscellaneous

Pub trivia teams 29 1,590 Team points Total points scored in a single night of trivia
Auto engineering

teams
2 113 Competition score Total team points gained in auto building competition

Bridge engineering
teams

4 46 Competition score Total team points gained in bridge building competition

Video game teams 4 269 Team points Total team points gained through competitions
Firefighter teams 10 214 Race times Total time to complete firefighter skills course

3 103 Turnout time Total time to leave the station after receiving a call
3 103 Travel time Total time to travel from the station to the site of an

emergency
Movie production

teams
6 100 Gross earnings ($) Total dollars earned for the length of a movie in theaters

Indiegogo teams 1 266 Total donations Total money pledged for Indiegogo campaign
1 266 Percentage of goal met Percent of goal met for Indiegogo campaign
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coding protocol that included definitions and exam-
ples for each of the three characteristics in Hypotheses
1–3 and Research Question 5. Three graduate student
coders with training on team theory were presented
with the following task: “Within each of the occupa-
tions listed below there is considerable variance regard-
ing each of the three dimensions. What we ask you to
do is to capture what a typical team in each occupation
experiences in terms of authority differentiation, tempo-
ral stability, and skill differentiation. Rate each sample
on these three dimensions on a Likert scale ranging
from ‘1’ (very low on this dimension) to ‘5’ (very high
on this dimension). Again, as you go through the cod-
ing, try to picture what a typical team looks like before
assigning a code to each sample.” The three coders had
significant personal experience working with a wide
range of teams (e.g., military teams, sports teams, stu-
dent teams).

Coders were then instructed to rate each of the 274
distributions on each of the three characteristics. They
first independently coded a subsample of the teams to
check for agreement. Intraclass correlation (ICC(2))
levels were acceptable for authority differentiation

(0.73) and skill differentiation (0.75), with a lower
value for temporal stability (0.65) (LeBreton and Sen-
ter 2008). After receiving additional training, coders
then continued with the full sample of teams. Results
of this second round of coding showed acceptable
ICC(2) for authority differentiation (0.84), temporal
stability (0.74), and skill differentiation (0.81). These
ICC levels are adequate for the purpose of this project
as shown by the statistically significant results we
observed (i.e., results are unlikely to be statistically
significant in the presence of substantial measurement
error). We used averages of the three raters for each
characteristic in the analyses. Table S1 in the online
appendix shows the scores for authority differentia-
tion, temporal stability, and skill differentiation for
each of the sample types.

Criterion Used in Hypothesis Testing: Performance
Variability and Proportion of Star Teams in a Distribu-
tion. We used parameters from the power law with
exponential cutoff (PLC) distribution to assess per-
formance variability and the proportion of star teams in
a distribution for testing Hypotheses 1–3 and answering

Table 1. (Continued)

Team type
Number of
distributions n Performance measure Description of performance measure

General organizational
teams

4 88 Leader reported performance Leader rated response regarding team outcomes

Sales teams 1 230 Percentage of goal reached Percentage of sales goal reached
Virtual supply chain

teams
1 61 Effectiveness rating Leader rated ability to meet effectiveness targets

IT virtual teams 1 63 Effectiveness rating Leader rated ability to meet effectiveness targets
IT development teams 1 83 Team performance rating Leader rated response regarding team outcomes
Customer service

teams
1 122 Machine Average number of copies made between service calls
1 122 Parts Percentage of budget associated with replacing parts
1 122 Response Average length of time between call and arrival of team
1 122 Customer satisfaction Ratings of customer satisfaction
1 71 Parts Percentage of budget associated with replacing parts
1 71 Response time Average length of time between call and arrival of team
1 71 Performance composite Composite score for team response times, parts, and calls

Mining communities
of practice

1 33 Leader rated performance Composite rating by leaders on team effectiveness

Business simulation
teams

1 516 Balanced scorecard ratings Composite of finance, processes, growth, and service
indicators

Total 274 200,825

Notes. n � number of teams per distribution—for cases for more than one distribution, n is the average. NCAA, National Collegiate Athletic
Association; NCAAF, National Collegiate Athletic Association Football; NHL, National Hockey League; MLB, Major League Baseball; ATP,
Association of Tennis Professionals; TD, touchdowns; RBI, runs batted in. Data set sources: soccer teams: www.soccerstats.com; NCAAF football
teams, NHL teams, MLB teams: www.sports-reference.com; ATP tennis teams: www.atpworldtour.com; Ragnar relay teams: www.webscorer.
com/ragnar; ProCycling teams: www.procyclingstats.com; NCAA bowling teams: www.collegebowling.com; Journal editorial teams: us.
sagepub.com/en-us/nam/impact-factor-ranking-results, www.scimagojr.com; State campaign teams: www.opensecrets.org; U.S. Congress:
www.house.gov, www.senate.gov; Pub trivia teams: www.triviakings.com/results; Auto engineering teams: students.sae.org/cds/
formulaseries/results/; bridge engineering teams: nssbc.com; firefighter teams: firefighterchallenge.com, lafd.org/fsla/stations-map; video
game teams: gosugamers.com; movie production teams: boxofficemojo.com; Indiegogo teams: indiegogo.com; general organizational teams:
Rego et al. (2019), Van Bunderen et al. (2018); sales teams: Ahearne et al. (2010); virtual supply chain teams: Maynard et al. (2012); IT virtual
teams: Maynard et al. (2019); IT development teams: Rapp and Mathieu (2019); customer service teams: Mathieu et al. (2006), Rapp et al. (2016);
mining communities of practice: Kirkman et al. (2011); business simulation teams: Dierdorff et al. (2019).
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Research Question 5. Specifically, a set of values follows
a PLC distribution if it fits the following probability dis-
tribution (Joo et al. 2017):

p(x) ∝ x−αe−λx, (1)

where Euler’s number e ≈ 2.718, and alpha (α) and
lambda (λ) are parameters indicating the rate of decay
that dictate the proportion of star teams. Although
both α and λ affect the distribution shape, λ is the
stronger parameter and has a more dominant impact
on the overall proportion of star teams (Joo et al.
2017). Moreover, using α instead of λ would not
change substantive conclusions because α � 1 + 1/λ
(Hanel et al. 2017). Therefore, we focused on λ as the
indicator of variability and the proportion of star
teams (i.e., greater variability and proportions are
associated with smaller λ values). Finally, the λ
parameter was the most appropriate choice given
that, as we describe later, PLC was overwhelmingly
dominant (i.e., 73% of nonnormal distributions).
Moreover, λ also is a parameter used in the equation
describing exponential distributions (see equation in
Figure 1). Combining PLC and exponential distribu-
tions shows that 84% of the nonnormal distributions
are accurately described by this particular parameter.
Moreover, λ also captures the rate of decay in other
types of distributions because exponents of power
laws can also be estimated from frequency distribu-
tions (Hanel et al. 2017).

Data Analysis
Distribution Pitting Methodology. We used a novel
methodological approach in team research called distri-
bution pitting to answer Research Questions 1–4 (Joo
et al. 2017). Distribution pitting compares observed dis-
tributions to each of the seven theoretical distributions
shown in Figure 1 and computes fit indices for each.
Then, using a falsification approach, it compares each
distribution’s fit index to the other distributions’ fit indi-
ces (e.g., normal versus pure power law, normal versus
exponential) to identify the best fitting distribution.
Therefore, if in any of these comparisons a distribution
is found to be a worse fitting distribution, it is ruled out
as the dominant one. This methodology has proven to
be accurate in the past (Joo et al. 2017) and allows for
distribution-level analyses. Additionally, distribution
pitting allows us to identify the proportion of star teams
in each distribution. For each sample we made 21 pair-
wise comparisons of distribution fit: 7!/(2![7–2]!). Fol-
lowing the same procedures as Joo et al. (2017), we
implemented three decision rules for identifying the
best fitting distribution for each of the 274 distributions.
First, for each of the 274 distributions, we compared
loglikelihood ratios with their associated p values for
each of the 21 comparisons using a cutoff of 0.10 as a

conservative cutoff score (Clauset et al. 2009). Second,
we used the principle of parsimony to further eliminate
distributions with the greater number of parameters
when there were two nested distributions remaining
(e.g., power law and PLC). Third, many of the distribu-
tions are “flexible” in that they approximate other dis-
tributions when using certain parameter values.
Therefore, we again used the principle of parsimony
and opted for the distribution with fewer possible dis-
tribution shapes (e.g., the inflexible distributions). In the
case of nested distributions, the one with the largest
number of parameters always fits at least as well as the
distribution with fewer parameters (Virkar and Clauset
2014). However, this increased precision of fit comes at
the cost of lower external generalizability (Joo et al.
2017). Accordingly, the second decision rule errs on the
side generalizability and relies on the more parsimoni-
ous distribution. We conducted all analyses with the
Dpit package in R.

Hypothesis Testing. We conducted analyses involving
relations between the three predictors (i.e., authority
differentiation, temporal stability, and skill differentia-
tion) and the λ values (indicating team performance
variability and the proportion of star teams). Although
Pearson’s r is the most frequently used correlational
measure, results can be biased when variables are not
normally distributed (de Winter et al. 2016). We per-
formed distribution pitting analysis on the distribution
of λ parameters and found that the PLC distribution was
the best fitting one. Accordingly, given the nonnormal
nature of the λ distribution, we used Spearman correla-
tions (rS) instead of Pearson’s rs to test our hypotheses.

Results
Table 2 provides a summary of results regarding the
number of times each distribution was identified as
the dominant one after implementing each of the three
decision rules. In the interest of full transparency and
replicability, the online appendix includes the follow-
ing additional and more detailed tables: Table S2
shows the dominant distribution after implementing
each of the three decision rules sequentially for each
of the distributions, Table S3 offers detailed distribu-
tion pitting results for four illustrative samples (i.e.,
the first four listed in Table S2), and Table S4 shows a
detailed summary of results based on the broad cate-
gories of teams: sports, academic journals, politics,
and miscellaneous.

Research Question 1: Overall Nature of the Team Per-
formance Distribution. As shown in Table 2, after
implementing all three decision rules, only 11% (30 of
274) were best described by a normal distribution. In
contrast, 63% (172 of 274) were best described by one
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of the heavy-tailed distributions, and the remaining
26% (72 of 274) were classified as undetermined
because more than one plausible distribution remained
after implementing the distribution pitting procedures.
In other words, we were able to empirically identify a
dominant distribution for 74% of the distributions. In
addition, we conducted a chi-square analysis to for-
mally test whether the number of distributions is
equally represented by normal compared with nonnor-
mal shapes (i.e., 50% of the 274 distributions expected
to follow normality and 50% expected to not follow
nonnormality). This is an extremely conservative test
given that most team research assumes normality, and
hence, a more realistic test would be close to 100% of
the distributions are expected to follow normality.
Even based on a very conservative 50-50 test, results
showed a clear dominance of nonnormality: χ2 (1, n �
274) � 50.82, p � 1.014 × 10−12.

The PLC accounted for 73% (126 of 172) of the
heavy-tailed distributions. Table 2 further breaks
down the heavy-tailed distributions to give a more
detailed count of each of the seven distributions sum-
marized in Figure 1. Overall, results provided evi-
dence about the relative rarity of normal distributions
and the dominance of nonnormality, particularly the
PLC distribution. To offer a visual representation of our
results, Figure 2 includes examples of four observed
distributions (i.e., PLC, lognormal, and exponential)
overlaid with a normal distribution.

In addition, because journal editorial teams contrib-
uted 30% of the distributions, we conducted a sub-
grouping analysis comparing them to the other samples.
Results shown in Table S4 in the online appendix dem-
onstrate that nonnormal distributions are dominant
regardless of the context in which teams operate. Specifi-
cally, for journal editorial teams, 95% (79 of 83 distribu-
tions) followed a heavy-tailed distribution. Similarly,

98% of political teams followed a heavy-tailed distribu-
tion (52 of 53 teams).

Despite the dominance of nonnormality, we were
intrigued by the few distributions for which normality
was the dominant one. As shown in Table S4 in the
online appendix, of the 30 distributions that classified
as normal, 28 are from the miscellaneous team cate-
gory. Moreover, of these 28 distributions, 25 came from
the same pub trivia team category indicating that fac-
tors unique to this specific and particular context are
driving the dominance of the normal distribution.

Research Question 2: Tournament vs. Nontournament
Contexts as a Boundary Condition. Table S5 in the
online appendix shows that teams in a tournament
setting included all of the sports samples, most politi-
cal samples, and several samples from the miscellane-
ous category (e.g., pub trivia teams). Teams included
in the nontournament subgroup included the journal
editorial board samples and several of the miscellane-
ous samples (e.g., IT professionals). For the tourna-
ment subgroup, the normal distribution accounted for
only 19% of the distributions (30 of 158). Of the 75
nonnormal distributions, the PLC was dominant in
83% (i.e., 62 of 75). For the nontournament subgroup,
the normal distribution accounted for 0% of the distri-
butions (0 of 116). Of the 97 nonnormal distributions,
the PLC distribution accounted for the majority of dis-
tributions with 66% (64 of 97). Therefore, regardless of
tournament context, the normal distribution is not the
best descriptor of team performance distributions.

Research Question 3: Team Performance Conceptuali-
zation and Operationalization as a Boundary Condi-
tion. Of the 274 distributions, 208 included team level
performance measures based on truly collective con-
structs (e.g., number of wins for a National Hockey

Table 2. Summary of Results from Distribution Pitting Methodology Identifying the Most Dominant Distribution

Distribution

After rule 1 After rules 1 and 2 After all three rules

Count Percentage Count Percentage Count Percentage

Heavy-tailed distributions (total) 64 23 69 25 172 63
Power law with exponential cutoff 36 56 36 52 126 73
Lognormal 17 27 17 25 17 10
Exponential 0 0 5 7 18 11
Weibull 11 17 11 16 11 6
Power law 0 0 0 0 0 0
Poisson 0 0 0 0 0 0

Normal (total) 0 0 0 0 30 11
Undetermined (total) 210 77 205 75 72 26

Lognormal 88 42 88 43 51 71
Normal 78 37 78 38 48 67
Weibull 111 53 94 46 27 38
Power law with exponential cutoff 122 58 103 50 10 14
Poisson 114 54 113 55 8 11
Exponential 21 10 16 8 3 4
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League team in a season), whereas 66 were based on
aggregation of individual level data (e.g., number of
home runs hit by a Major League Baseball (MLB)
team in a season). Of the 208 distributions where per-
formance was a team level construct, 162 (78%) were
best described by a nonnormal distribution. For these
162 nonnormal distributions, the PLC was the most
dominant in 120 (i.e., 74%). Therefore, results regard-
ing the dominance of nonnormal distributions, and
specifically the PLC, are not due to aggregating indi-
vidual level data to the team level of analysis.

Research Question 4: Hard Left-Tail of Zero in Measur-
ing Team Performance as a Boundary Condition. We
calculated the number of distributions that included
zero and found that 169 of the 274 distributions (i.e.,
61.68%) did not. For example, this hard left-tail of zero
did not exist for National Collegiate Athletic Associa-
tion Football football teams (i.e., none of the teams
had an average of zero touchdowns scored on runs
over a season or touchdowns scored on passes over a
season), or sales teams (i.e., none of the teams met

zero percent of their sales quota). Of the 105 distribu-
tions that did contain a hard-left tail of zero, 97 (i.e.,
92%) were best described by a heavy-tailed distribu-
tion and 79 (i.e., 81%) of those fit a PLC distribution.
Similarly, of the 170 distributions that did not contain
a hard-left of zero, 75 (i.e., 44%) were best described
by a heavy-tailed distribution versus only 27 (i.e. 16%)
by a normal distribution. Of the heavy-tailed distribu-
tions, 47 (i.e., 63%) were best described by a PLC dis-
tribution. Therefore, results regarding the prevalence
of nonnormality are not explained by the presence of
a hard left-tail of zero.

Additional Post Hoc Internal Validity Evidence: Effect
of Sample Homogeneity. Although we made an effort
regarding sample and performance measure diversity
to enhance generalizability (i.e., external validity), we
were also concerned about establishing evidence
regarding internal validity. Accordingly, to examine
yet another possible boundary condition for our
results, we created highly homogenous subgroups by
randomly selecting five years of data from MLB (total

Figure 2. Visual Representation of Four Illustrative Empirically Observed Distributions Overlaid with a Normal Distribution

Note. (a) PLC distribution, (b) lognormal distribution, (c) exponential distribution, and (d) PLC distribution.
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of 20 distributions). We focused on the following per-
formance indicators: total wins, total runs, total runs
batted in, and total bases. Table S6 in the online
appendix shows that 0% of the distributions are best
described by normality (0 of 20). Non-Gaussian distri-
butions were either dominant or codominant for all 20
distributions.

Hypotheses 1–3: Structural Characteristics of Teams
as Predictors of Heaviness of Distributions’ Tails.
Smaller values for λ, which is the parameter describ-
ing the rate of decay that dictates the proportion of
star teams, indicate more distribution variability (i.e.,
greater proportion of stars). Therefore, a negative cor-
relation suggests that as the structural team character-
istic increases, there is more variability. Hypothesis 1
predicted that greater authority differentiation would
be negatively related to variability. Results provided
support for this hypothesis: rS (274) � −0.15, p < 0.01.
That is, as authority differentiation increases, perform-
ance variability and the proportion of star teams in
the distribution increases. As an example, heavier tails
emerge in distributions of firefighter team perform-
ance where there is a clear commander in charge of
decision making. Hypothesis 2 was also supported
because results demonstrated a positive correlation
between temporal stability and λ: rS (274) � 0.66, p <
0.01. In other words, lower levels of temporal stability
were associated with distributions with greater varia-
bility (i.e., greater proportion star teams). As an exam-
ple, distributions with lighter tails emerge in National
Collegiate Athletic Association (NCAA) football teams
because there is generally a multiyear commitment
from players to a school and stringent rules governing
college athlete transfers that generate long-term com-
mitment. Finally, the correlation between skill differen-
tiation and the scaling parameter was not significantly
different from zero: rS (274) � −0.09, p � 0.18. Thus,
Hypothesis 3 was not supported.

Research Question 5: Relative Importance of the Three
Structural Characteristics. A comparison of Spear-
man correlations showed that the effect of temporal
stability was more than four times as large as the
effect of authority differentiation (i.e., |0.66| versus
|0.15|). Therefore, temporal stability was the strongest
predictor of distribution variability and the propor-
tion of star teams.

Discussion
We examined 274 team performance distributions
from a wide range of industries, occupations, and con-
texts. Results showed that only 11% of the samples
were best described by a normal (i.e., Gaussian) distri-
bution. In contrast, distribution pitting methodology

results uncovered that 63% of the distributions were
clearly nonnormally distributed, and 73% of these
were best described by a power law with exponential
cutoff distribution. For 26% of the distributions,
results were undetermined in that there was not a sin-
gle dominant distribution and some of the distribu-
tions shapes cannot be completely ruled out with
certainty. An examination of possible boundary con-
ditions showed that the dominance of nonnormality
was replicated regardless of whether teams are in
tournament versus nontournament contexts, whether
performance was conceptualized and measured as an
aggregation of individual-level performance or as a
team-level construct, whether performance was meas-
ured including a hard-left of zero, and whether sam-
ples were more or less homogeneous. Regarding
predictors of heaviness of distributions’ tails, results
showed that authority differentiation and temporal
stability are associated with distributions with greater
variability (i.e., a greater proportion of star teams). A
comparison of these two showed that temporal stabil-
ity had the largest effect.

Implications for Existing Organization
Science Theory
First, from a descriptive perspective, the empirical dis-
covery regarding the overall nonnormal nature of the
team performance distribution provides a more accu-
rate description of reality. To use a metaphor that an
anonymous reviewer shared with us, our results show
that “the world is round, not flat.” Specifically, there is
a much greater difference in performance levels across
teams than assumed based on the normal distribution.
Consider predictions of extreme scores based on how
many teams would be found three standard deviations
(SDs) to the right of the mean using our team perform-
ance distributions. For the distribution of engineering
journal editorial teams, whereas a normal distribution
would only predict 7 of the 5,339 teams to achieve a
count of two citations per published article, our results
revealed a total of 90. Therefore, our results show that,
based on the type of the team performance distribution,
it is not appropriate to discount star teams as being
“anomalies.” Rather, there is a need to recognize and
expect some teams to vastly outperform others. Some
theories of team performance mostly focus on the varia-
bility of team performance, but this variability is
believed to be limited because the majority of teams are
assumed to cluster around the average (Mathieu et al.
2000, DeShon et al. 2004). Our results based on team
performance distributions suggest the need to focus not
only on the average and on the (limited) variability of
team performance, but more specifically on how team
theories can adequately account for the teams that
exist in the upper end of the performance distribution.
Certainly, star teams may exist even in the absence of
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thick tails and there are situations where team capabil-
ities may not be the major driver in the emergence of
these stars (e.g., luck, unintentional performance; Van-
couver et al. 2016). However, the presence of heavier
tails than previously believed provides a strong empir-
ical basis for investigating teams that appear to have
found a “winning formula.” In fact, research on teams
typically does not investigate stars (i.e., “outliers”). In-
stead, it asks questions such as (Mathieu et al. 2019):
What are the factors that explain variance in team per-
formance (i.e., why do some teams perform better than
others, distinguishing between low and high performing
teams)? However, given the finding that team perform-
ance is not normally distributed, team theories should
also address questions such as: What are the antecedents
leading to the emergence of star teams and how are
these outlying teams, which are more common than pre-
viously assumed, qualitatively different from others?

Second, it is ironic that, although many contemporary
team theories actually predict the heavy-tailed nature of
team performance (e.g., performance spirals, team com-
position, team learning, punctuated equilibrium), team
researchers do not seem to acknowledge these theories.
Otherwise, contemporary team research would not use
procedures and methods that assume normality or
transform nonnormality away. This is a substantive
rather than a trivial methodological detail because simu-
lation studies show that by relying on the assumption of
normality when data are actually heavy-tailed introdu-
ces a large amount of bias—and the amount of bias
increases with greater deviations from normality (de
Winter et al. 2016). As an illustration of the meaning of
our results for team theory, consider a recently pub-
lished meta-analysis that investigated the relationship
between transactive memory systems and team per-
formance2 and reported r2 � 0.152. Our results showed
that 63% of distributions are heavy-tailed. Based on
large-scale Monte Carlo simulation results, consider a
conservative amount of bias of 24% due to nonnormal-
ity (de Winter et al. 2016). If 63% of the samples in this
published meta-analysis are nonnormal, the resulting
meta-analytic r2 would be 0.108 instead of 0.152. We
derive two notable implications from re-examining this
published meta-analysis in light of our results. First, the
coefficient of determination now likely falls outside of
the 90% confidence interval, meaning that we can no
longer conclude with confidence that there is a nonzero
relation between transactive memory systems and team
performance. Second, the corrected coefficient of deter-
mination means that only 11% of variance in perform-
ance is explained by transactive memory systems, in
contrast with the original conclusion that 15% of var-
iance is explained. This represents a decrease in 26.66%
in the size of the effect. We emphasize again that this is
a conservative corrected estimate and the difference in

effect sizes would increase with increased nonnormality
(i.e., increase in the thickness of the tail). Therefore, by
scrutinizing past empirical research based on whether
the normality assumption may have been tenable, it is
likely that many past substantive conclusions may need
to be revised and updated.

Additional Implications for Future
Research Directions
Although our study focused on the distribution level of
analysis, our results have implications for future re-
search addressing the distribution as well as the team
level of analysis. An especially salient implication for
theory and opportunity for future research lies in the
variability that exists in distribution shapes even when
teams are ostensibly created for similar purposes. For
instance, consider journal editorial teams. Although edi-
torial teams may all have a similar goal (i.e., publish
high-quality articles), different generative mechanisms
are present depending on constraints that exist due to
different disciplines and fields of study. For example,
open-access publishing has recently become more com-
mon across all domains of scholarly research; however,
it is more common among the sciences, and science,
technology, engineering, and math (STEM) in particular,
compared with the humanities and social sciences
(Gross and Ryan 2015). With access to a larger number
of journals for publishing, incremental differentiation
may be a driving mechanism as journals that are able to
maintain a higher performance trajectory will generate
heavy-tailed performance distributions. Similarly, fields
that generally publish papers that require resource-
intensive studies as the norm (e.g., biomedical clinical
trials; de la Torre Hernández and Edelman 2017) espe-
cially emphasize the initial level of performance of a
journal (e.g., higher impact factor, higher h-index) due
to the massive amounts of resources required to conduct
a study. Because of this, we may see proportionate dif-
ferentiation as the driving mechanism. Having a clearer
understanding of the generative mechanism present in
these situations can lead to better theory aimed at
improving our understanding of the conditions that
drive the emergence of different distribution shapes.

Additionally, given the prevalence of the generative
mechanism of incremental differentiation in the ob-
served performance distributions, team theory can
begin to incorporate these findings into future concep-
tualizations. Because team performance trajectories
appear to impact the team performance distribution
shape, there is a need to incorporate these trajectories
in understanding team performance. For instance,
consider research on group pride (Beal et al. 2003).
Our results showed that star teams are more abundant
than previously thought and belonging to these
teams likely has an impact on feelings of pride toward
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the team. Currently, theory on status differences of
groups is not clearly defined in the team literature
(Driskell et al. 2018), and group pride has received sig-
nificantly less attention than other aspects of cohesion
(Beal et al. 2003). However, our findings can provide a
direct link from the experience of group pride to the
ability a team has to maintain high performance tra-
jectories. Also, theory on multiteam systems (MTSs)
(De Vries et al. 2016) could be updated to explicitly
consider these generative mechanisms as well. Specifi-
cally, MTSs can be characterized along a number of
dimensions such as competency separation (Luciano
et al. 2018). In the presence of greater performance vari-
ability, systems of multiple star teams could be con-
structed where competency separation would be low.
On the other hand, the impact of team processes and
output of teams may also be negatively impacted when
competency separation is high, owing to the presence of
one star team surrounded by several lower-performing
teams. This is especially important given recent research
that has investigated competency-based trust compared
with relationship-based trust and their impact on creat-
ing and maintaining partnerships (Connelly et al. 2018).
Thus, the shape of the distribution and the generative
mechanisms involved can help address how compe-
tency separation impacts performance of the whole sys-
tem as well as the internal relationships between teams.

Second, although our results provided evidence
that the most prevalent type of nonnormal team per-
formance distribution was PLC, other distributions
also emerged. Considering the context in which a
team operates may help explain why different types
of heavy-tailed distributions exist and provide fruitful
avenues for future research directions. For example,
although appearing in other domains, the PLC distri-
bution was especially dominant in the “Journal” and
“Politics” domains. In each of these domains, it ap-
pears that the key factor in driving nonnormality is
differentiation in the linear growth of team perform-
ance trajectories. Therefore, for instance, journal edito-
rial boards that can continually increase the citation
count of published articles over time and rise to star-
dom, while those that stagnate do not achieve these
higher levels of performance. Similarly, there might
be a differential ability of political campaign teams to
increase their campaign donations linearly over time.

Third, the context in which a team operates has rele-
vance for the emergence of heavy-tailed distributions.
For example, in situations that are characterized by
the lognormal distribution, there is likely a greater
importance placed on the starting point of perform-
ance compared with exponential tail distributions.
In these contexts, the initial starting value of a team
will combine with the performance trajectory to dic-
tate which teams rise to the level of stars. Future
research is necessary to investigate which additional

characteristics of team contexts drive the emergence
of different distributions in addition to the three we
examined in our study. Consider, for instance, the
competitive nature of the team environment that may
serve as a potential contextual factor that could lead
to a greater proportion of stars. Our results showed
that when we subgrouped the distributions into 116
tournament and 158 nontournament environments,
results still showed a prevalence of heavy-tailed dis-
tributions and dominance of the PLC among nonnor-
mal distributions. In less competitive environments,
star teams emerged at much higher rates than would
be expected by a normal distribution, providing fur-
ther evidence for a generalized theory of heavy-tailed
emergence. Nevertheless, results of distribution pit-
ting showed that the PLC was not the unanimous
winner among all nonnormal distributions (Table 2).

Fourth, another major contextual factor that could
affect the emergence of different types of distributions
and the proportion of star teams is the presence of a
ceiling. In the presence of limiting factors to overall
performance, generative mechanisms such as homog-
enization may cause a normal distribution to emerge.
In an especially powerful case that provides initial
empirical support for this possibility, almost all our
pub trivia performance samples were best described
by a normal distribution. In this context, a hard ceiling
(i.e., maximum possible point total) limits the range of
performance scores, likely resulting in distributions
approaching normality and fewer star teams.

Fifth, another implication for future research is the
need to address the impact of star teams within their
organizations. Specifically, although star teams are
beneficial in terms of their output, other factors may
make star teams detrimental to organizations due to
issues such as within-organization competition. Be-
cause of this, it will be important to further address
intraorganizational team dynamics (e.g., interorgani-
zational team conflict; Rose and Shoham 2004) given
the prevalence of star teams as well as those teams on
the lower end of the performance distribution.

Sixth, although a focus on the heavy tail is war-
ranted given our results, another important consi-
deration is what is occurring at the left side of the
performance distribution where teams are extremely
underperforming compared with the star teams. With
heavy-tailed distributions, there is often a large cluster
of these teams that would fall below the average level
of performance, as shown by the classic study by
Schachter et al. (1951), in which increased team cohe-
siveness surprisingly led to both higher and lower
performing teams. Thus, there is a need to account for
those underperforming teams.

Seventh, our focus was on the distributions of teams
(i.e., distribution level of analysis) and not on individ-
ual teams (i.e., team level of analysis). Future research
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focusing on the team level of analysis could investi-
gate possible dynamics leading to the exceptional per-
formance of specific teams. For example, there is a
current debate on the ideal proportion of individual
stars leading to team stardom (Swaab et al. 2014, Gula
et al. 2021).

Eighth, some nonintuitive findings also provide an
opportunity to pursue further research. Specifically,
the greater proportion of nonnormal distributions in
the nontournament environments than in the competi-
tive environments demonstrates a need to investigate
further the importance of competition in determining
the shape of the performance distribution. Something
that seems to be consistent across all competitive con-
texts is the resource constraints that do not necessarily
exist in noncompetitive environments. In competitive
environments it can be very difficult to “expand the
pie” in terms of outputs (e.g., competitions do not
allow for all teams to be winners as there will always
be losers). In contrast, noncompetitive environments
are not generally constrained in the same way as there
are ways for teams to not only take a bigger piece of
the pie but also to expand the size of the pie for all
those involved as well, leading to a larger proportion
of star teams. In addition, our results may be some-
thing of an anomaly given that most tournament con-
texts that were normally distributed were specifically
from the pub trivia teams. It is possible that the much
higher proportion of nonnormal distributions in the
nontournament distributions exists because of some-
thing that is unique only to those trivia competition
environments that other team competitions do not
have.

Finally, our findings are consistent with results at the
individual level of analysis that showed that individual
performance follows a PLC distribution (Joo et al. 2017).
An important implication of this result is that there
seems to be a generalized and isomorphic phenomenon
of nonnormality emergence at multiple levels of analy-
sis that provides opportunities for future multilevel
theory development (Morgeson and Hofmann 1999).
Therefore, although team-level outcomes are often the
result of more than just an aggregation of their indi-
vidual members (Woolley et al. 2010), our findings
replicated across these two types of performance opera-
tionalization. An important goal for the field of organi-
zation science, as in all scientific fields, is to produce
strong, generalizable theories (Pfeffer et al. 1977, Boyd
et al. 2005). Our results contribute toward this goal in
that they provide evidence for the ubiquity of heavy-
tails with their associated generative mechanisms in
performance distributions at the team level of analysis.
Future research could examine potential isomorphism
at additional lower (e.g., within-individual perform-
ance) and higher levels (e.g., organizational units larger
than teams such as industries).

Methodological Implications
The dominant and widely used organization science
data analytic procedures rely on GLM and do not
adequately capture the true nature of relations in the
presence of heavy-tailed distributions. For example, a
regression coefficient with a value of 2.5 means that
there is a 2.5 increase in team performance given a one-
point increase in the antecedent; however, this is on
average—a crucial clarification that is usually left out
when results are reported (Cohen et al. 2003). In the
presence of heavy-tailed distributions, as a measure of
central tendency, the average cannot be interpreted in
isolation because it is disproportionally influenced by
outliers. In fact, models that assume normality treat the
first and second moments—the mean and the var-
iance—as key statistics in testing theory (O’Boyle and
Aguinis 2012). However, because the mean is a measure
of central tendency, it is only informative when it pro-
vides a description of a typical data point. In the pres-
ence of heavy-tailed distributions and many star teams,
the average is moved to the right and no longer cap-
tures what could be considered a “typical” team
(Buzsáki and Mizuseki 2014). Likewise, due to their
extremely high level of heterogeneity, heavy-tailed dis-
tributions can have pseudo-infinite variance, making
the variance (and SD) estimate unstable and therefore
not useful as a descriptive or inferential statistic (Li and
Zhao 2012). Accordingly, using the mean and SD in
computing parameter estimates (e.g., correlations,
regression coefficients), test statistics (e.g., F, t), and
associated p values, as is done in all data analytic proce-
dures that assume normality of residuals (e.g., multiple
regression, analysis of variance, structural equation
modeling, multilevel modeling), can lead to biased
results (Jones et al. 2016). Overall, assuming normality
implicitly or explicitly means that team research
assumes little variability across teams, which may not
be a good representation of the actual (nonnormal) dis-
tribution. Although the central limit theorem takes care
of producing normally distributed sampling distribu-
tions even if the raw score distributions are not normal,
effect-size estimates computed using the mean and
variance (e.g., regression coefficients, correlation coeffi-
cients, ds) are biased (Cohen et al. 2003), further highlight-
ing the importance of understanding the underlying
distribution shape.

Accordingly, based on our results, authors and jour-
nal reviewers should not leave the normality assump-
tion unchecked. First, distribution pitting, which can
be implemented using the Dpit package for R avail-
able on CRAN, provides a procedure for testing
whether a distribution is actually normal or better
described by a heavy-tail. Just like we used distribu-
tion pitting results to decide to use Spearman correla-
tions instead of Pearson’s correlations to test our
hypotheses, distribution pitting can be implemented
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to inform which statistical tools to use (i.e., methods
that assume normality should only be used with nor-
mality is observed empirically). Additionally, research-
ers should also consider generating visualizations to
provide a clearer understanding of the nature and
degree of nonnormality as well as the opportunity to
communicate that information to readers. Second, if the
distribution is not normal, there will be a need to use
alternative data-analytic procedures that do not rely on
the normality assumption. For example, these include
Spearman correlations instead of Pearson’s correlations
(de Winter et al. 2016) and additive unrestricted non-
parametric multiple regression instead of GLM-based
regression (Aguinis et al. 2019). Our results are relevant
for all future research on team performance, but partic-
ularly so when the purpose is to predict the size and
importance of a hypothesized performance antece-
dent. Instead, if the purpose is to simply show that a
hypothesized effect exists or not (i.e., dichotomous
decision), then deviations from normal distributions
may not change the result. Bayesian analysis provides
opportunities for researchers to investigate important
theoretical relationships even in the absence of nor-
mality (Kruschke et al. 2012). Our results could inform
team researchers in the future regarding more accu-
rate prior distributions (Winkler 1967) to be used in
Bayesian analysis. A related methodological implica-
tion of our results is that by drawing attention to the
shapes of distributions, future research will hopefully
be more transparent regarding distributions shapes,
which will in turn be useful for future meta-analyses
focusing on quantitatively aggregating results from
prior empirical studies.

Another methodological implication is the impor-
tance of understanding and managing data points
that are located far from the others (i.e., outliers). This
is especially true when dealing with influential teams
that fall in the thick tails of the performance distribu-
tion (Aguinis et al. 2013). Although these star teams
(i.e., outliers) are often viewed as problems, in reality,
they can indicate the presence of substantively inter-
esting data points that warrant further investigation
and theory development (Gibbert et al. 2021). How-
ever, reviews have suggested that previous research
has not adequately and transparently managed out-
liers (Aguinis et al. 2013). Outliers are likely to be
ignored if the mean is reported in isolation. At a mini-
mum, it should be reported together with the mode
and median—as well as measures of dispersion.

Implications for Practice
Because of the heavy-tailed nature of the team per-
formance distribution, there is an important distinc-
tion between the performance of star teams and that
of others. This finding suggests a need to implement
proper compensation practices that reflect the very

large variability in performance across teams. Creat-
ing compensation packages focused on spurring equi-
table, team-based pay that helps distinguish teams
can help managers reward top performing teams and
motivate other teams to reach higher performance lev-
els (Garbers and Konradt 2014). This is especially true
if the rewards are based on equity (Garbers and Kon-
radt 2014), and there is transparency in the compensa-
tion plan (Aguinis and Bradley 2015). In addition, in
the presence of heavy-tailed distributions, the re-
source allocation-performance and performance-value
functions are not linear (Trevor et al. 2012, Hill et al.
2017). Accordingly, if the goal is to increase an organi-
zation’s overall performance, return on investment
(ROI) will be greater when resources are allocated to
star teams. Thus, the specific nature of the perform-
ance distribution also informs practices about how to
allocate resources among top-performing teams
because some distributions show greater levels of dif-
ferentiation between teams (e.g., pure power law)
than others (e.g., exponential tail).

Additionally, although our results demonstrate that
star teams are more common than previously thought,
it is important to also pay particular attention to teams
on the other end of the distribution—those that occupy
the lowest levels of performance. Managers of teams
should be cognizant of teams that fall at these extreme
low levels and improve their performance by provid-
ing additional training (Salas et al. 2008) or improving
team motivation (Park et al. 2013), which are ways to
increase the performance of these lower-performing
teams. In fact, based on an organization’s strategic pri-
orities and values, it may be beneficial to minimize the
heterogeneity between teams in an attempt to enhance
the performance of all teams.

Limitations
First, our data set included many sports samples, which
is a potential limitation in terms of generalizability.
However, sports data can be used to build and test
theory in many domains (Day et al. 2012). Additionally,
the sports teams used in our studies share many impor-
tant characteristics with teams in more traditional work
contexts (Day et al. 2012). For example, like many
organization teams, sports teams perform tasks in high
stress situations, are required to communicate exten-
sively with teammates, work collaboratively to achieve
a desired outcome, and compete with other teams for
limited resources. Second, although much of the sports
data we used reflect only part of the entire team per-
formance construct (e.g., NCAA football yards per game
reflects only the offensive performance of a sports team
while ignoring defensive contributions to the team), our
measures are nevertheless consistent with our definition
of team performance because they capture various aspects
of team output and results. Similarly, while there are
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antecedents of team performance that may impact the
ultimate output a team is able to generate (e.g., luck,
organizational prestige) the team performance indicators
we chose closely follow our definition of team perform-
ance and capture a crucial aspect of performance for each
of the samples chosen. Nevertheless, we readily acknowl-
edge that other team performance measures warrant
future consideration. For instance, consider team creative
output (Somech and Drach-Zahavy 2013). Consistent with
our results, Choi and Lee (2020) reported that this type of
performance may also follow a heavy-tailed distribution.
Third, given our research design, we did not investigate
how the generative mechanisms may have effects over
time. However, the shape of the team distribution is a nec-
essary and sufficient condition to conclude which genera-
tive mechanism is responsible. Although a longitudinal
design would add additional evidence, the presence of a
specific distribution shape such as PLC is, in itself, enough
to indicate which generative mechanism (i.e., incremental
differentiation) is present given empirical evidence about
the formation of distributions across numerous fields such
as physics, zoology, ornithology, and geology (McKelvey
and Andriani 2005, Joo et al. 2017). Finally, although incre-
mental differentiation is dominant, this does not preclude
the existence of other mechanisms that may also occur
simultaneously. For example, although incremental differ-
entiation does not rely on feedback loops to generate a
heavy-tail, those feedback loopsmay still exert some influ-
ence over the shape of the heavy-tailed distribution (Joo
et al. 2017). However, our findings suggest that the impact
from those mechanisms is either short lived or not as
influential as the incremental growth that leads to the
emergence of PLC distributions.

Conclusions
Although many team theories imply the existence of
nonnormal team performance distributions, empirical
team research assumes normality implicitly by using
statistical procedures that rely on the normality assump-
tion or explicitly by transforming (i.e., squeezing)
nonnormal data and giving less or no weight to very
high-performing teams (e.g., by eliminating outliers).
We sought to first ascertain the overall nature of the
team performance distribution and critically examine
theory-based boundary conditions (i.e., tournament
versus nontournament environments, performance
conceptualized and measured as an aggregation of
individual-level performance versus team-level per-
formance, performance measured in the presence ver-
sus absence of a hard left-tail zero, more versus less
homogenous samples). Then, using team learning curve
as an overarching conceptual framework, we examined
three theory-based predictors of the shape of the team
performance distribution and the proportion of star
teams: Authority differentiation, temporal stability, and

skill differentiation. Results indicated that the normal
distribution is not nearly as common as has been
assumed in the past. Instead, nonnormal distributions,
and the power law with exponential cutoff distribution
in particular, emerged as the most prevalent across a
wide range of samples and contexts and boundary con-
ditions. Moreover, incremental differentiation provides
the best explanation for the observed large degree of
performance variability and greater proportion of star
teams, and temporal stability was the strongest antece-
dent. These findings challenge existing assumptions
regarding team performance, open up new areas for
future research directions, and lead to recommenda-
tions on methodological and managerial practices.
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