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We propose an integrative framework for understanding the relationship
among 4 closely related issues in human resource (HR) selection: test
validity, test bias, selection errors, and adverse impact. One byproduct
of our integrative approach is the concept of a previously undocumented
source of selection errors we call bias-based selection errors (i.e., errors
that arise from using a biased test as if it were unbiased). Our integrative
framework provides researchers and practitioners with a unique tool
that generates numerical answers to questions such as the following:
What are the anticipated consequences for bias-based selection errors of
various degrees of test validity and test bias? What are the anticipated
consequences for adverse impact of various degrees of test validity and
test bias? From a theory point of view, our framework provides a more
complete picture of the selection process by integrating 4 key concepts
that have not been examined simultaneously thus far. From a practical
point of view, our framework provides test developers, employers, and
policy makers a broader perspective and new insights regarding practical
consequences associated with various selection systems that vary on their
degree of validity and bias. We present a computer program available
online to perform all needed calculations.

Human resource selection tests that are not supported by validity evi-
dence are not useful in predicting job performance and other meaningful
criteria. Tests that are biased are a legal liability and, in addition, using
them can lead to unethical decision making. Consequently, test validity
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and test bias are two of the most central concepts in human resource selec-
tion research and practice (e.g., Reilly & Chao, 1982; Schmidt, Pearlman,
& Hunter, 1980). Although validity evidence can take on several forms,
test validity is usually operationalized using a correlation coefficient (i.e.,
validity coefficient; Schmidt & Hunter, 1998). Similarly, although several
definitions of test bias have been proposed (Darlington, 1971; Hunter &
Schmidt, 1976; Petersen & Novick, 1976; Thorndike, 1971), potential test
bias is usually assessed using a multiple regression framework in which
race, sex, and other categorical variables related to protected class status
are entered as moderators (AERA, APA, & NCME, 1999, Standard 7.6;
Campbell, 1996; Cleary, 1968; Hough, Oswald, & Ployhart, 2001).

In addition to considerations regarding test validity and test bias, tests
are most useful when they allow for selection decisions that minimize se-
lection errors and avoid adverse impact. Selection errors occur when peo-
ple who are hired do not meet performance standards (i.e., false positives)
or when people are not hired but could have met performance expecta-
tions (i.e., false negatives; Cascio & Aguinis, 2005a, Chapter 13). Adverse
impact is usually operationalized as a ratio of two selection ratios (SRs;
Biddle, 2005; Bobko & Roth, 2004). Thus adverse impact is SR1/SR2,
where SR1 and SR2 are the number of applicants selected divided by the
total number of applicants for the minority and majority groups of appli-
cants, respectively. It is desirable that adverse impact be as close to 1.0 as
possible (e.g., for sex, similar selection ratios for men and women).

In spite of the voluminous literature on the related issues of test va-
lidity, test bias, selection errors, and adverse impact, researchers tackle
these topics in isolation or in pairs. For example, researchers have stud-
ied the relationship between test validity and test bias (e.g., Darlington,
1971; Thorndike, 1971) and the relationship between test validity and
selection errors (e.g., Curtis & Alf, 1969; Murphy & Shiarella, 1997).
However, we have not been able to locate any published source that inves-
tigated the interrelationship among all four of these concepts explicitly.
Moreover, some of the most widely read and cited books on personnel
selection, staffing, and industrial psychology do not consider these con-
cepts in an integrated manner. Instead, they typically discuss the concept
of adverse impact in the chapter on legal issues, the topic of test bias
in the chapter on fairness, and the topics of validity and selection errors
in the chapter on prediction/decision making (e.g., Cascio & Aguinis,
2005a; Gatewood & Feild, 2001; Guion, 1998; Ployhart, Schneider, &
Schmitt, 2006).

Human resource selection researchers and practitioners alike are
clearly interested in the key and interrelated concepts of test validity, test
bias, selection errors, and adverse impact. So, why is it that these four
key concepts, although closely linked to each other, have been studied
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mainly in isolation or in pairs only? We believe this void in the literature
is due to the absence of an integrative framework that would allow for
an understanding of how these concepts are intrinsically and interactively
related to each other. Such an integrative framework would provide a use-
ful decision-making tool through which selection instruments could be
evaluated before they are actually used to make decisions based on psy-
chometric issues around the prediction of applicants’ job performance as
well as value-based considerations at the team, organizational, and soci-
etal levels associated with anticipated adverse impact. These value-based
considerations can include achieving a balanced and diverse workforce
and enhancing perceptions of justice among job applicants (Zedeck &
Goldstein, 2000).

Accordingly, the goal of the present article is to propose an integra-
tive framework that uses well-known regression and correlation principles
and references to a standard normal table of probabilities for measuring
the interrelationships among test validity, test bias, selection errors, and
adverse impact. In the process of developing the framework, we discuss
an often-unrecognized source of selection errors. Most human resource
researchers and practitioners are familiar with selection errors that result
from imperfect regression predictions, such as those described by Taylor
and Russell (1939). In our framework, selection errors can also occur
when biased tests are used as if they were unbiased. In this article, we
refer to the former as predictive selection errors and the latter as bias-
based selection errors. Our discussion of bias-based selection errors is
particularly noteworthy given that a conclusion of no or small bias may be
due to several methodological and statistical artifacts that reduce sample-
based effect sizes substantially in relation to their population counterparts
(Aguinis, Beaty, Boik, & Pierce, 2005) and also often lead to low sta-
tistical power (Aguinis & Stone-Romero, 1997). In particular, due to the
numerous methodological and statistical artifacts that affect test bias as-
sessment, it is possible that a test thought to be unbiased may actually
be biased (Aguinis, 1995, 2004; Aguinis & Stone-Romero, 1997). Our
analysis provides new insights into both positive and negative outcomes
associated with the use of a selection tool that, unknown to the decision
maker, is actually biased.

We advance a framework that integrates all four concepts within a
single model, provides human resource selection researchers and practi-
tioners with a new tool to look at key issues in human resource selection,
and generates answers to questions such as the following, What are the
consequences for bias-based selection errors of various degrees of test
validity and test bias? What are the consequences for adverse impact of
various degrees of test validity and test bias? Note that our integrative
framework is needed because, although in some cases a researcher may be
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able to use data from an empirical validity study to compute adverse impact
and predictive selection errors, sample sizes may not be large enough to
obtain meaningful estimates of certain proportions (e.g., proportion of
individuals whose scores fall above a cutoff score on a test but whose
performance scores fall below a desirable level). Furthermore, empirical
validity studies do not consider the issue of bias-based selection errors
as incorporated in our framework. In short, our integration of key human
resource selection concepts allows us to ask and answer questions that
thus far were not possible.

From a theory point of view, our integrative framework provides a
more complete picture of the selection process by integrating four key
concepts that have not been examined simultaneously thus far. This in-
tegration will allow for fruitful areas of research in the future such as
the development of selection tools that maximize validity, minimize bias,
and mitigate adverse impact and selection errors. In addition, our pro-
posed framework will allow researchers to better understand potential
tradeoffs between test validity and test bias in affecting adverse impact.
From a practical point of view, our framework provides test developers,
employers, and the legal system a broader perspective regarding prac-
tical consequences associated with various selection systems that vary
regarding their degree of validity and bias. We also present a computer
program that can be executed online to implement our framework and
perform all needed calculations. This online calculator can be used to
anticipate how the numerical values of these key concepts change in-
teractively before a selection test is actually used. Thus, the program
can be used to evaluate the tradeoffs involved in maximizing job per-
formance based on psychometric principles versus maximizing the influ-
ence of other important value-based principles associated with adverse
impact (workforce integration and diversity, perceptions of justice of the
selection system, etc.).

The article is organized as follows. First, we provide a description of
our integrative framework, including definitions of its key components.
We do so by minimizing the technical material (which is mostly presented
in Appendixes A through C) and, instead, we present our framework us-
ing graphs. Second, we provide an analytic description of how to use
our framework to derive precise numerical values for anticipated adverse
impact and bias-based selection errors. Third, we describe three distinct
selection scenarios to show the applicability of our framework to a diverse
set of selection situations. We close by discussing the implications of using
our proposed framework for theory, practice, and policy making. The final
section of the paper also describes a computer program available online
that produces graphs and performs all needed calculations.
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Basic Concepts and Definitions: Test Bias, Expected Selection Ratios,
Expected Adverse Impact, and Bias-Based Expected Selection Errors

Consider a situation in which applicants can be classified as belonging
to one of two groups based on protected status (e.g., race or sex). In our
presentation, Group 1 represents the minority group (e.g., ethnic minority)
and Group 2 the majority group (e.g., ethnic majority). In some situations,
Group 1 and Group 2 follow the same regression line, such as the one
labeled common regression line: E(Y | X) = α + βX in Figure 1, which
links test scores (X) and some criterion such as job performance (Y). (The
other two regression lines in Figure 1 will be discussed shortly.) This com-
mon regression line represents an unbiased test because, at any given test
score (e.g., x∗ in Figure 1), it predicts identical performance levels (y∗) for
both groups (AERA, APA, & NCME, 1999). Because an unbiased test is
one in which both groups follow the same regression line, we refer to that
line as the common regression line. We adopt the consensual operational-
ization of test bias as differences in regression lines across groups given
that “Cleary’s (1968) regression model of test bias or fairness has received
the greatest acceptance and use among psychometricians” (Martocchio
& Whitener, 1990, p. 489; see Aguinis, 2004; Campbell, 1996; Hough
et al., 2001; and Maxwell & Arvey, 1993, for similar statements).
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Figure 1: Graphic Illustration of Expected Performance for Common and
Group-Based Regression Lines.
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Figure 2: Graphic Illustration of the Expected Selection Ratio for Group 1
(i.e., Ethnic Minority Group).

Figure 1 also depicts a situation involving a biased test in which each
group follows its distinct regression relationship, lines that we refer to as
group-based regression lines. If a test is biased, it will predict average per-
formance y∗

1 = E(Y1 | x∗) for Group 1 and y∗
2 = E(Y2 | x∗) for Group 2. The

group-based regression lines in Figure 1 depict a fairly common finding
regarding the use of cognitive ability tests in human resource selection: dif-
ferences between groups are detected regarding intercepts (but not slopes)
for the group-based regression lines (Hunter & Schmidt, 1976; Reilly,
1973; Rotundo & Sackett, 1999).

We begin our presentation with unbiased tests and by initially ref-
erencing Group 1 (i.e., the focal group, which is typically the minority
group; Biddle, 2005). As shown in Figure 2, test and performance scores
for Group 1 are presumed to follow a continuous bivariate distribution
function. This function is labeled f (X1, Y1), where the “1” subscripts ref-
erence Group 1. In practice, the decision maker may have a minimum
desired performance level in mind, symbolized by y∗ in Figure 2, and
would like to offer employment to individuals whose desired performance
is y∗ or higher. At y∗, inverse prediction using the regression of Y1 on
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X1 associates the desired performance level y∗ with the selection cutoff x∗

(Cascio & Aguinis, 2005b). Of course, some individuals whose test scores
are x∗ will perform better than, and some worse than, y∗ because the valid-
ity coefficient is less than 1.0 in absolute value, and the regression model
does not offer a perfect prediction mechanism. Similarly, some individ-
uals whose test scores are lower than x∗ will be able to perform at level
y∗ or higher. Therefore, in order to distinguish between individuals and
averages, we define x∗ in Figure 2 to be the expected selection cutoff given
y∗. The expected selection cutoff is the organization’s best guess as to the
appropriate selection cutoff while in the planning stage of implementing
selection decisions. If E(Y1 | X1) = α1 + β 1 X1, at the specific value of y∗,
y∗ = α1 + β 1x∗. Thus, the expected selection cutoff is found by solving
for x∗:

x∗ = (y∗ − α1)/β1. (1)

We define the expected hiring pool to be the group of individuals
with test scores of at least x∗. Referring again to Figure 2, the expected
hiring pool includes all individuals whose test scores exceed x∗ on the joint
distribution, f (X1, Y1). We define the expected selection ratio to be the area
under f (X1, Y1) to the right of x∗ (i.e., the percentage of the population under
consideration for employment). As shown in Equation A5 in Appendix
A, this area is identical to the area to the right of x∗ under the marginal
distribution for Group 1’s test scores, f (X1), an area we label P(X1 ≥ x∗).
An analogous definition applies to Group 2. Thus, a group’s expected
selection ratio is the upper tail area of its marginal distribution function of
test scores at the expected selection cutoff. Our definition of the expected
selection ratio is analogous to the more commonly understood definition
of a selection ratio as the observed percentage of those hired relative to the
total number of applicants. A key difference is that our framework allows
decision makers to consider a priori (i.e., expected and before decisions
are made) percentages as opposed to a posteriori (i.e., observed and after
the fact) percentages.

We define expected adverse impact to be the ratio of the expected
selection ratios for Groups 1 and 2. Figure 3 provides a graphic illustration
of how to calculate expected adverse impact when a test is unbiased:
expected adverse impact is simply the ratio of the smaller shaded area,
P(X1 ≥ x∗), to the larger shaded area, P(X2 ≥ x∗). Thus, expected adverse
impact (EAI) for an unbiased test is calculated as the ratio of two tail
probabilities:

EAI = P
(
X1 ≥ x∗)/P

(
X2 ≥ x∗). (2)
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Figure 3: Graphic Illustration of Expected Adverse Impact for an
Unbiased Test.

Now, consider the situation in which a decision maker mistakenly be-
lieves that he or she is using an unbiased test when in fact the test is biased.
As noted earlier, this may not be an uncommon situation given the low sta-
tistical power of the test bias assessment procedures (e.g., Aguinis, 1995,
2004; Aguinis & Stone-Romero, 1997). In this case, the selection system
will produce unanticipated selection errors (i.e., bias-based errors)—that
is, expected false positives and expected false negatives that result from
using a biased test as if it were unbiased. Biased-based selection errors are
distinct from those arising from a test with less than perfect validity. To
illustrate, Figure 4 shows a biased test in which the Group 1 regression line
is different from that of Group 2. Superimposed on Figure 4 is the common
regression line. In Figure 4, as in Figures 2 and 3, the desired performance
level is y∗. Suppose that, believing that the test is unbiased, decision mak-
ers use the common regression line to choose x∗ as the expected selection
cutoff so that the expected hiring pool includes those individuals whose
test scores equal or exceed x∗. What happens if, unknown to the deci-
sion makers, the test is actually biased? If the test is biased, there are two
group-based regression lines, not one. Using the group-based regression
lines instead of the common line in Figure 4 indicates that the true ex-
pected selection cutoff associated with y∗ for Group 1 is not x∗ but rather
x∗

1. Therefore, if the common line is used, those individuals from Group 1
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whose test scores fall within the range [x∗, x∗
1] are in the expected hiring

pool but are not expected to reach performance level y∗ because their per-
formance, as predicted by the (true) Group 1 regression line, is less than
y∗. We define such applicants as (bias-based) expected false positives. In
this case, expected false positives occur because the true expected hiring
pool at y∗ is smaller than anticipated. The probability of expected false
positives is the area under f (X1) between x∗ and x∗

1 (as shown in Figure 4).
The precise numerical value for the probability of expected false positives
is given by:

P
(
x∗ ≤ X1 ≤ x∗

1

)
. (3)

Refer again to Figure 4 and suppose that applicants from Group 2
whose test scores meet or exceed x∗ are anticipated to be able to satisfy
the minimum performance standard y∗ based on the inverse prediction
from the common regression line. If the true X–Y relationship for Group
2 is its distinct regression line (instead of the common regression line),
then Group 2 applicants whose test scores fall within the range [x∗

2, x∗]
are also expected to be able to meet the minimum performance level y∗

but are not in the expected hiring pool. We define a (bias-based) expected
false negative as an applicant who will not be considered for employment
based on the common regression line but who is expected to be able to
meet or exceed the minimum performance standard if the group-based line
is used. In Figure 4, the probability of expected false negatives is the area
under f (X2) between x∗

2 and x∗; that is

P
(
x∗

2 ≤ X2 ≤ x∗). (4)

Given the situation in Figure 4, both groups will display expected false
negatives whenever x∗

1 and x∗
2 are both less than x∗ at y∗. Analogously,

both groups will display expected false positives when x∗
1 and x∗

2 exceed x∗

at y∗.
In general, the human resource selection literature refers to false pos-

itives and false negatives when selection predictions differ from actual
selection outcomes due to the fact that no prediction system is perfect
(i.e., validity coefficients are always less than 1.0 in absolute value). In
this article, we provide a detailed analysis of an additional source of false
positives and false negatives: selection errors that occur when a biased test
is unknowingly used as if it were unbiased (i.e., bias-based errors). Thus,
in the remainder of this article, we use the terms expected false positives
and false negatives to refer to bias-biased selection errors.

Our integrative framework also leads to the conclusion that when bi-
ased tests are used as if they were unbiased, average performance levels by
group will deviate, sometimes quite drastically, from desired performance
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Figure 4: Graphic Illustration of the Probabilities of Expected False
Positives and Expected False Negatives.

levels. Let’s assume that selection decisions are made based on the com-
mon regression line when in fact the lines are not precisely identical across
groups. Referring back to Figure 1, at x∗, decision makers expect perfor-
mance level y∗ for both groups because they believe that the test is unbiased
(i.e., that the common regression line holds true). If instead there are dis-
tinct group-based lines, the actual average performance is y∗

1 for Group 1
and y∗

2 for Group 2. The further away are y∗
1 and y∗

2 from y∗, the greater will
be the deviation of anticipated performance using the common regression
line from predictions using the group-based lines. Using Figure 1 to illus-
trate, if x∗ exceeds the point of intersection of the common regression line
and the Group 2 regression line, then using the common regression line
when the test is actually biased will lead to the unpleasant surprise that the
performance of those people hired from both groups is not, on average, as
good as anticipated. On the other hand, if x∗ is less than the intersection
of the common regression line and the Group 1 regression line, when the
common line is used to make hiring decisions, decision makers will face
the pleasant surprise that average observed performance of both groups
will exceed anticipated performance.

Test validity (i.e., the correlation between X and Y) is part of our
integrative framework via the shape of the ellipses for f (X1, Y1) and f (X2,
Y2) in Figures 1 through 3. For example, as the validity coefficient for
Group 1 approaches zero, its elliptical contours become more circular in
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shape. Thus, in our framework, test validity is used as an input to the
model. Its value can change from situation to situation so that different
values for the validity coefficient generate numerically different expected
selection ratios, expected selection errors, and expected adverse impact.

Finally, we emphasize that the discussion above refers to expected
selection ratios, expected selection cutoffs, expected adverse impact, and
probabilities of expected false positives and negatives. Thus, our analysis
allows researchers and practitioners to make decisions regarding the use
of specific selection tools before actual outcomes are observed. This is
obviously a key advantage of our framework in that it can be used in the
planning stages of selection decision making and, thus, allows decision
makers to be proactive and anticipate selection outcomes, some of them
highly undesirable (e.g., unacceptable rates of expected false positives
and negatives, severe expected adverse impact), before they are actually
observed.

Putting the Basic Concepts Together: Obtaining Numerical Values
Using the Normal Model

Once assumptions are made about the stochastic properties of f (X1,
Y1) and f (X2, Y2), we can obtain specific numerical values for regression
lines, expected selection ratios, expected adverse impact, and probabili-
ties of expected false positives and negatives. In this section of the arti-
cle, we presume that both bivariate distribution functions, f (X1, Y1) and
f (X2, Y2), are normally distributed (which is a usual assumption in the hu-
man resource selection literature; e.g., Guion, 1998; Hunter, Schmidt, &
Judiesch, 1990; Taylor & Russell, 1939; Thomas, 1990), with mean test
scores µX1 and µX2 , mean performance scores µX1 and µX2 , test score
standard deviations σ X1 and σ X2 , performance standard deviations σ Y1

and σ Y2 , and test validities ρ1 and ρ2. Regression lines for predicting Y
from X for each group can be derived from these parameters as follows
(see Appendix B for details):

Group 1: E(Y1 | X1) = α1 + β1 X1 (5)

where

β1 = ρ1(σY1/σX1 ), and (6)

α1= µY1
− β1µX1, (7)

and similarly for Group 2. A test is unbiased if Groups 1 and 2 have
identical regression lines, or α1 = α2 and β 1 = β 2. To determine whether
a test is unbiased, we compare the numerical values of the intercepts α1

and α2 and of the slopes β 1 and β 2.
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Suppose that the test is unbiased. Because we have invoked normality,
the expected selection ratio for Group 1 (ESR1) is found by referring to a
standard normal table:

ESRc1 = P
(
X1 ≥ x∗) = P

(
Z ≥ z∗

c1

)
, (8)

where the subscript “c” reminds us that the expected selection cutoff is
found from the common regression line and

z∗
c1 = x∗ − µX1

σX1

. (9)

For Group 2,

ESRc2 = P
(
X2 ≥ x∗) = P

(
Z ≥ z∗

c2

)
, (10)

where

z∗
c2 = x∗ − µX2

σX2

. (11)

Because expected adverse impact (EAI) is the ratio of the expected selec-
tion ratios, it follows from Equations 8 and 10 that

EAI = ESRc1/ESRc2 = P
(
Z ≥ z∗

c1

)
/P

(
Z ≥ z∗

c2

)
. (12)

In Equations 8 through 11, x∗ is the value for X at y∗ from the common
regression line as depicted in Figures 3 and 4. The slope of the common
regression line is given by

β = ρ
σY

σX
(13)

(e.g., Maxwell & Arvey, 1993, p. 434), and the y-intercept of the common
regression line is

α = µY − βµX , (14)

whereµX ,σX ,µY ,σY , andρ are the population test score mean and standard
deviation, performance mean and standard deviation, and test validity. In
the special case of an unbiased test, β = β 1 = β 2 and α = α1 = α2.

Alternatively, suppose that the group regression lines are not identical.
To determine expected false positive and negatives, we need two additional
Z-scores:

z∗
g1 = x∗

1 − µX1

σX1

(15)

z∗
g2 = x∗

2 − µX2

σX2

, (16)
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where x∗
1 and x∗

2 are the expected selection cutoffs from the group-based
lines at y∗ (see Figure 4 and Equations B7 and B8). Hence, the “g” sub-
scripts reference values computed at the group-based regression lines. If
the test is biased, an expected (bias-based) false negative for Group 1 will
occur when x∗ is used to determine the expected selection cutoff and zg1

∗

< zc1
∗ (see Appendix A for details). Therefore, the probability of expected

false negatives for Group 1 for the normal model will be

P
(
z∗

g1 < Z < z∗
c1

)
if z∗

g1 < z∗
c1. (17)

The probability of bias-based expected false positives for Group 1 is

P
(
z∗

c1 < Z < z∗
g1

)
if z∗

c1 < z∗
g1. (18)

For Group 2, the probabilities of expected false negatives and positives
are, respectively,

P
(
z∗

g2 < Z < z∗
c2

)
if z∗

g2 < z∗
c2, and (19)

P
(
z∗

c2 < Z < z∗
g2

)
if z∗

c2 < z∗
g2. (20)

One important advantage of our framework is its ability to calculate
numerical values for key concepts using straightforward mathematical
relationships when normality is presumed. In particular, regression lines,
expected performance levels, expected selection cutoffs, expected adverse
impact, and probabilities of bias-based expected false positives and nega-
tives are easily calculated using well-known regression relationships and
with reference to a standard normal table of probabilities. However, we
emphasize that our general framework is applicable to any stochastic spec-
ification and is not limited to those situations in which normality is present
(see Appendix A). Furthermore, as described in Appendix A, our frame-
work is readily generalizable to selection situations involving more than
two groups as well as more than one predictor.

In the next two sections of the article, we illustrate the applicability and
usefulness of our framework using three human resource selection scenar-
ios. Scenario A, described in the section titled “Application I,” refers to
a situation in which the lines are identical across the two groups (i.e., the
test is truly unbiased). Scenarios B and C, described in the section titled
“Application II,” refer to situations in which the lines are not identical
across the two groups: In Scenario B, differences are based on intercepts,
and in Scenario C differences are based on both intercepts and slopes. We
chose Scenarios A and B for their likeness to actual selection situations
as reported in the literature, thus providing a meaningful context for our
work. Scenario C (i.e., differences in both intercepts and slopes) is not
typically reported in the literature. However, we included this situation



178 PERSONNEL PSYCHOLOGY

to illustrate the generalizability of our framework. To make our examples
simple yet realistic, our three scenarios presume the use of a general men-
tal abilities test (X) to predict performance (Y) as measured on a 5-point
scale of supervisory ratings. We also assume that both groups’ test scores
and supervisory ratings follow a joint bivariate normal distribution (see
Appendix B). Note that although many equations are involved in obtaining
all the numerical values, the computations described in the next two sec-
tions are performed easily by using the online calculator that we describe
in the Discussion section of this article.

Application I: Linking Desired Performance With Expected Adverse
Impact (Unbiased Test)

In this application, we consider the desired performance–adverse im-
pact tradeoff in relation to the 80% adverse impact benchmark, which
has been institutionalized as a desirable target since the publication of the
Uniform Guidelines on Employee Selection Procedures in 1978. Diver-
sity is a goal of many employers that can be achieved best by selection
procedures that produce similar proportions of qualified applicants. So,
although our illustrations use the 80% rule of thumb as a desirable mini-
mum target, our framework and online calculator allow for an examination
of the consequences of using a particular test in relation to any adverse
impact proportion.

Scenario A: An Unbiased Test

In Scenario A, we set the mean test score for Group 2 (i.e., majority
group) at 100 (µX2 = 100) and at 92.8 for Group 1 (µX1 = 92.8). This is
consistent with differences between mean scores for African Americans
and Whites reported in the literature (Roth, Bevier, Bobko, Switzer, &
Tyler, 2001). Because the difference in general mental ability mean scores
between groups varies based on setting, sample, and type of construct
assessed (e.g., fluid vs. crystallized intelligence; Hough et al., 2001), we
are using these specific values as mere illustrations. We set the standard
deviations equal for both groups (i.e., σ X1 = σ X2 = 10 and σ Y1 = σ Y2 =
1) and, consistent with previous findings, presume that the test is equally
valid for both groups (ρ1 = ρ2 = .5; cf. Hunter, Schmidt, & Hunter, 1979).
The mean supervisory rating is set at 3.11 for Group 2 (µY2 = 3.11) and
2.75 for Group 1 (µY1 = 2.75), which are consistent with results published
recently regarding mean standardized differences in job performance be-
tween African Americans and Whites (Roth, Huffcutt, & Bobko, 2003).
We also presume that µX = 98.56, σ X = 10.406, µY = 3.038, σ Y = 1.0103,
and ρ = .515. Although these parameter values are derived from the
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group-specific parameters using the assumptions that there are only two
groups and that Group 1 candidates comprise 20% of the total population,
our general formulation is not restricted to these two conditions. Col-
lectively, these parameters coincide with an unbiased test because, from
Equations 6 and 7 (and their analogues for Group 2), and Equations 13
and 14, β 1 = β 2 = β = .05 and α1 = α2 = α = −1.89.

Suppose that the desired performance level is 3.25 on the 5-point scale.
At y∗ = 3.25, the expected selection cutoff is x∗ = 102.8 (Equation B6).
The expected selection ratio for Group 1 applicants is 15.87% (Equations 8
and 9); the expected selection ratio for Group 2 applicants is 38.97%
(Equations 10 and 11). Finally, expected adverse impact is 40.7%
(Equation 12), well below the 80% benchmark considered satisfactory
by the Uniform Guidelines.

Figure 5 shows the relationship between desired performance levels
and expected adverse impact for Scenario A. To derive the values plot-
ted in Figure 5, we varied y∗ from zero to five and used Equation 12 to
compute the corresponding expected adverse impact for each value of y∗.
Superimposed on this graph is the 80% adverse impact benchmark. To just
reach the 80% benchmark using this particular test, Figure 5 shows that
the organization must lower the desired performance level from 3.25 to
2.45. At y∗ = 2.45, the expected selection cutoff is x∗ = 86.8, which
produces expected selection ratios of 72.6% for Group 1 and 90.7%
for Group 2. Thus, in this particular scenario, to reach the 80% bench-
mark, an organization would expect to select large percentages from both
populations.

In short, our integrative framework provides a method for directly link-
ing desired performance levels with expected selection ratios. Knowing
the expected selection ratios allows for the computation of expected ad-
verse impact. In this particular scenario, we conclude that although this
is an unbiased test and there is validity evidence, an organization may
choose not to use this particular test because in order to avoid substantial
expected adverse impact it would have to set predicted performance levels
much lower than desired and, thus, expect to hire a very large proportion
of applicants from both groups.

Application II: Expected Selection Errors That Arise From Incorrectly
Believing That a Test Is Unbiased

Since the passage of the Civil Rights Act of 1991, the use of differential
selection cutoff scores and group-based regression lines is unlawful. In
other words, organizations must use the same regression equation and
selection cutoffs with all applicants regardless of group membership.
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Figure 5: Relationship between Desired Performance Levels (y∗) and
Expected Adverse Impact for an Unbiased Test (Scenario A).

As noted in the Introduction section, to determine whether a test is un-
biased, researchers typically use a multiple regression framework in which
race, sex, and other categorical variables related to protected class status
are entered as moderators (AERA, APA, & NCME, 1999, Standard 7.6;
Campbell, 1996; Cleary, 1968; Hough et al., 2001). Unfortunately, several
Monte Carlo simulations (e.g., Aguinis, Boik, & Pierce, 2001; Aguinis
& Stone-Romero, 1997) demonstrated that the moderator test has very
low statistical power. One conclusion from this body of research is that
very large samples are needed to detect differences in slopes across groups
even when large differences exist in the populations. Indeed, Aguinis and
Stone-Romero (1997) issued the warning that due to the low power of
the test bias assessment procedure “practitioners may inappropriately use
personnel selection tests that predict performance differentially for vari-
ous subgroups” (p. 203). More recently, Aguinis et al. (2005) suggested
that “past null findings be closely scrutinized to assess whether they may
have been due to the impact of artifacts as opposed to the absence of a
moderating effect in the population” (p. 101). Put another way, in many
situations, organizations believing that they are in compliance with the
Civil Rights Act of 1991 might unknowingly be using a biased test as
if it were unbiased. In these situations, using our framework reveals that
organizations will face unanticipated bias-based expected false positives
and false negatives, as well as unanticipated performance levels from both
groups, as demonstrated by Scenario B.
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Scenario B: A Biased Test Believed to be Unbiased (Intercept Differences)

Scenario B uses the same group-specific parameters as in Scenario A
except we set µY2 = 3.5. These parameters coincide with a biased test
characterized by different yet parallel regression lines:

Group 1: E(Y1 | X1) = −1.89 + 0.05X1

Group 2: E(Y2 | X2) = −1.5 + 0.05X2.

In other words, differences in regression equations between groups are due
to differences in intercepts, which is a common finding (e.g., Hunter &
Schmidt, 1976; Reilly, 1973; Rotundo & Sackett, 1999). For Scenario B,
an individual from Group 1 is expected to perform .39 points lower on
average on the 5-point performance scale than an individual from Group 2
with the same test score. Referring back to Figure 4, the vertical distance
between the group-based regression lines is .39 points. Alternatively, at
any given performance level, Group 1’s expected selection cutoff will be
7.8 points higher than that for Group 2 because the distance between x∗

1
and x∗

2 at any chosen y∗ is 7.8. We also presume in Scenario B that µX =
98.56, σ X = 10.41, µY = 3.35, σ Y = 1.04, and ρ = .54. Using Equations
13 and 14, the common regression line for Scenario B is as follows:

Common Regression Line : E(Y | X ) = −1.967 + 0.053948X

Suppose that a particular organization wishes to hire individuals who
are able to perform at a minimum level of three points on the 5-point
supervisory rating scale (y∗ =3). Let’s say that decision makers conduct the
usual moderator test or related analyses (i.e., Lautenschlager & Mendoza,
1986) and conclude that the test is unbiased and, consequently, use the
common regression line to choose an expected selection cutoff of x∗. The
common regression line predicts an expected selection cutoff score on the
general mental abilities test of 92.07 for both groups (Equation B6) and,
therefore, at y∗ = 3, expected adverse impact is 67.3% (Equation 12).
Let’s further assume that, contrary to the null statistical significance result
regarding test bias, the test is actually biased (i.e., there are intercept-
based differences between the regression lines). Under this scenario, the
probability of expected false negatives is 5.5% of Group 2 applicants
(Equation 19) and the probability of expected false positives is 22% of
applicants from Group 1 (Equation 18). Put another way, as shown in
Figure 6 at y∗ = 3, making decisions based on the incorrect presumption
of lack of test bias will result in failing to hire 5.5% of qualified Group 2
applicants and in hiring 22% of Group 1 applicants who are not qualified.
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Figure 6: Relationships Between Desired Performance Levels (y∗), Expected
Adverse Impact, and Probabilities of Expected False Negatives and

Expected False Positives for a Biased Test (Based on Intercept Differences)
Believed to be Unbiased (Scenario B). Group 1 has no expected false negatives
over the range displayed in this graph. Group 2 will have expected false positives

once y∗ exceeds 4.42, but these values are miniscule (<.001).

As in Scenario A, we can obtain the precise value for y∗ that just meets
the 80% adverse impact benchmark by varying y∗ and calculating ex-
pected adverse impact from Equation 12. Figure 6 illustrates the result of
this analysis. To attain the 80% benchmark, the organization must lower its
desired performance level from 3.00 to 2.72, where the expected selection
cutoff from the common regression line is x∗ = 86.88 and expected adverse
impact is 79.9%. At y∗ = 2.72 and x∗ = 86.88, the organization expects to
select 72.3% of the Group 1 applicants and 90.5% of those from Group 2.
Furthermore, our analysis indicates that at x∗ = 86.88 (the value associ-
ated with the 80% benchmark and the common regression line), 19.9% of
individuals from Group 1 (the minority group) will not meet the expected
performance standard and 3.5% of qualified individuals from Group 2 (the
majority group) could meet the y∗ = 2.72 performance level but are not
under consideration for employment (see Figure 6 at y∗ = 2.72). Similar
to Scenario A, to meet the 80% adverse impact benchmark, the organi-
zation must lower its desired performance level to the point where large
percentages of both populations are under consideration for employment.



AGUINIS AND SMITH 183

Furthermore, at x∗ = 86.88, average performance of both groups will
deviate from the desired performance level predicted by the common re-
gression line (cf. Figure 1). Although the expected performance for both
groups is 2.72 via the common regression line, in this case in which the
test is actually biased, the true average performance levels will be 2.84
for Group 2 and 2.45 for Group 1 (Equations B10 and B11). Group 2
will perform .12 points better than expected on average, but Group 1 will
perform .27 points worse than expected on average.

Scenario C: A Biased Test Believed to be Unbiased (Intercept and Slope
Differences)

Scenario C’s group parameters are identical to those in Scenario B
except we increase the standard deviation of test scores for Group 1 to
σ X1 = 15. Consequently, the regression line for Group 2 is steeper than
that for Group 1; that is, in Scenario C, the group-based regression lines
differ regarding both intercepts and slopes. The regression line for Group 2
is the same as in Scenario B. Group 1’s regression line for Scenario C
is:

Group 1 Regression Line : E(Y1 | X1) = −0.3433 + 0.033X1.

For Scenario C, we set µX = 98.56, σ X = 11.5, µY = 3.35, σ Y = 1.04,
and ρ = .53.

Figure 7 includes a plot of expected adverse impact against the desired
performance level for Scenario C. The relationship between expected ad-
verse impact and y∗ is nonmonotonic. For small values of y∗, virtually
everyone is under consideration for selection from both groups, so ex-
pected adverse impact is close to a highly desirable value of 1.0. As y∗

increases, the expected pool of eligible Group 1 applicants declines at
a faster rate than that of Group 2 and expected adverse impact reaches
undesirable levels. It eventually increases as the expected hiring pool for
Group 2 declines faster than the expected hiring pool of Group 1. Expected
adverse impact can exceed 1.0 because σ X1 > σ X2 , which means that the
tail area of f (X1) will eventually exceed that of f (X2) for large values
of y∗.

Interestingly, Figure 7 shows that there are two values for y∗ that will
just meet the 80% benchmark for Scenario C using the common regression
line: at y∗ =2.53 and at y∗ =3.91. If the organization’s desired performance
level falls within the range of 2.53 to 3.91, expected adverse impact will
be less than the 80% benchmark. Only those desired performance levels
in the high and low ranges coincide with meeting or exceeding the 80%
benchmark.
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Figure 7: Relationships Between Desired Performance Levels (y∗), Expected
Adverse Impact, and Probabilities of Expected False Negatives and

Expected False Positives for a Biased Test (Based on Intercept and Slope
Differences) Believed to be Unbiased (Scenario C). Group 1 expected false

negatives and Group 2 expected false positives are so small that they are
undetectable in this graph.

At the desired performance level of y∗ = 3.91, the relatively high
expected selection cutoff (x∗ = 110.24) calls for an expected selection
ratio of 12.2% for Group 1. However, because in this scenario the test is
actually biased, the vast majority of those people under consideration for
selection from Group 1 will fail to meet expectations of y∗ = 3.91 because
the probability of expected false positives is 11.2% for Group 1 (Figure 7).
For Group 2, 20.6% are expected to be able to perform at or above y∗ =
3.91, but only 15.3% are under consideration for employment (i.e., the
probability of a false negative for Group 2 is 5.3%). Furthermore, at x∗ =
110.24 and y∗ = 3.91, the average performance for Group 1 will be less
than, and that for Group 2 greater than, the desired level because y∗ = 3.91
> y∗

1 = 3.33 and y∗ = 3.91 < y∗
2 = 4.01.

At the other end of the spectrum, the expected selection cutoff at
y∗ = 2.53 is x∗ = 81.45. The expected selection ratios are 77.5% for
Group 1 and 96.8% for Group 2. Group 1 will perform .16 points lower
than expected on average (y∗

1 = 2.37) and have a 10.5% expected false pos-
itive rate. Group 2 will perform very close to expectations (y∗

2 = 2.57) and
will have a negligible (.6%) rate of expected false negatives. Accordingly,
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just meeting the 80% expected adverse impact target can be achieved
with little compromise in expected performance for Group 2 and virtually
no bias-based selection error for Group 2. Unfortunately, virtually all of
Group 2 would be in expected hiring pool.

Discussion

This article addresses a void in the literature regarding relationships
among the key and interrelated concepts of (a) test validity, (b) test bias,
(c) selection errors, and (d) adverse impact. We proposed a framework
based on statistical principles that integrates these four concepts into one
comprehensive planning tool and allows researchers and practitioners to
assess numerically how the four concepts interact with each other. To
make our approach more user friendly and accessible, we have designed
a computer program written in Java that is available for free and can
be executed online at http://www.cudenver.edu/∼haguinis (click on “Se-
lection Program” on the left). This computer program assumes bivariate
normality for both groups and performs all needed computations, in-
cluding the creation of graphs similar to Figures 1 and 4 and an output
table providing precise numerical values based on user-supplied input.
The resulting graphs and tables can be used as an aid in decision mak-
ing and analysis by researchers, test developers, employers, and policy
makers.

Implications for Theory and Future Research

From a theory point of view, our framework provides a more complete
picture of the selection process by integrating four key concepts that have
not been examined simultaneously thus far. Because of this integration,
our framework provides answers to several why-type questions such as
the following: why various characteristics of the testing situation (e.g.,
test score means across groups, expected selection ratios) lead to expected
adverse impact, why desired performance levels may need to be lowered in
order to mitigate expected adverse impact, why there is a tradeoff between
expected false positives and negatives across groups in some cases, why
using a common regression line generates bias-based expected selection
errors and unanticipated performance should a test prove to be biased, and
so forth. We hope this integration will allow for fruitful areas of research
in the future such as the development of selection tools that maximize va-
lidity, minimize bias and expected selection errors, and mitigate expected
adverse impact.
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Implications for Practice

Our framework provides test developers, employers, and the legal
system with a broader perspective regarding practical consequences
associated with various selection systems that vary regarding their degree
of validity and bias. Test developers and employers are mostly concerned
about selection accuracy whereas policy makers are concerned about
accuracy but are also concerned about broader societal issues (Cascio,
Goldstein, Outtz, & Zedeck, 2004). Our framework is sufficiently broad
to allow each of these stakeholders to answer key questions about human
resource selection tests. For example, the implicit tradeoff between job
performance and expected adverse impact and related workforce integra-
tion and diversity considerations can be considered explicitly. Decision
makers can thus combine psychometric with other important value-based
considerations before using selection tests.

To use our framework, we propose the following process that is easily
implemented using the computer program mentioned above. First, input
the mean test score, mean performance score, test score standard devi-
ation, performance standard deviation, and validity coefficient for each
group and for the population as a whole (i.e., all individuals combined
regardless of group membership). The group with the lowest mean test
score should always be labeled as Group 1. An illustrative input screen us-
ing the parameters described above for Scenario B is included in Figure 8
(top panel). As shown in Figure 8 (top panel), the program will graph the
three regression lines: (a) common regression line, (b) regression line for
Group 1, and (c) regression line for Group 2 (similar to Figure 1). The
program will graph all three lines even if the usual statistical tools that are
used to assess potential test bias (e.g., Aguinis, 2004; Lautenschlager &
Mendoza, 1986) show no statistically significant differences in the group-
based intercepts and/or slopes. The lines will be identical in the display
only if the input is such that the intercepts and the slopes are exactly equal
for each group and the population as a whole.

After supplying the parameters to the input screen, clicking on the
“Outputs” tab produces an output screen such as the one shown in Figure 8
(bottom panel). The user can supply the program with the desired perfor-
mance level (shown to be 3.0 in Figure 8’s bottom panel). The output
screen will then display the associated expected adverse impact (67.3%
in Figure 8’s bottom panel), expected selection cutoff (92.072), group-
specific expected selection ratios and expected performance levels (e.g.,
52.9% and 2.714 for Group 1), and probabilities of expected bias-based
selection errors. Should any of these outcomes be undesirable to deci-
sion makers, sensitivity analysis can be performed by varying y∗ until key
outcomes such as expected adverse impact or desired performance levels
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Figure 8: Input (Top Panel) and Output (Bottom Panel) Screens for
Computer Program That Implements all Required Calculations.

reach acceptable levels. This can be easily done by holding, clicking, and
moving the slider that appears on the “Y axis” of the output screen. Ex-
amination of the numerical values on the output screen associated with
different y∗ values will determine what effect the differing desired per-
formance levels will have on expected performance, expected selection
ratios and adverse impact, and bias-based expected selection errors. The
user is then in a position to determine whether these outcomes would be
acceptable and, therefore, whether the test would be used.
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The application of our integrative framework to actual tests in actual
selection contexts allows test developers and employers to understand se-
lection decision consequences before a test is put to use. Following the
procedure outlined above allows for an estimation of practically mean-
ingful consequences (e.g., expected selection errors and expected adverse
impact) of using a particular test regardless of the results of the test bias as-
sessment. Thus, our framework allows for an understanding of the practical
significance of potential test bias regardless of the statistical significance
results, which often lead to Type II errors (e.g., Aguinis, 1995, 2004;
Aguinis et al., 2005; Aguinis & Stone-Romero, 1997). In other words, our
framework does not rely on null hypothesis significance testing, which
has been criticized heavily on numerous grounds (e.g., Cashen & Geiger,
2004; Cortina & Folger, 1998).

Finally, note that some users may utilize input values based on statistics
derived from small samples. These statistics (e.g., means and validity
coefficients for each group) are the best estimators of their respective
parameters, but they are influenced by sampling error (Aguinis, 2001).
Thus, when input values are based on small sample sizes, computations
using the program can be made using ranges of values that fall within each
statistic’s confidence interval in addition to the point estimates.

Implications for Policy Making

Important new insights and public policy implications arise from the
use of our integrative framework regarding the use of test scores as man-
dated by the Civil Rights Act of 1991. For example, return briefly to the
group-based parameters from Scenario B, but set the common regression
line to E(Y | X ) = −6.91667 + .10417X . In this scenario, an examination
of the values for y∗ that coincide with expected adverse impact of at least
80% in Figure 9 indicate that, over this range and for any given y∗ value,
there is less expected adverse impact when group-based regression lines
are used than when the common regression line is used (Appendix C de-
tails the calculations needed to produce the values plotted in Figure 9). Our
framework allows for the conclusion that although the Civil Rights Act
of 1991 prohibits differential selection cutoffs, such a prohibition means
that in some situations expected adverse impact becomes more severe (as
compared to using group-based lines). On the other hand, in other in-
stances, using a common regression line and one selection cutoff for both
groups (regardless of whether the test is actually biased or unbiased) can
lead to less severe expected adverse impact. This phenomenon is shown in
Figure 9 when y∗ ≥ 2.5. Note, however, that this range of values coincides
with expected adverse impact values smaller than 80%.
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Figure 9: Relationships Between Desired Performance Level (y∗), Expected
Adverse Impact for a Test Believed to be Unbiased, and Expected Adverse

Impact for a Biased Test.

Given the Civil Rights Act of 1991, the use of group-based regression
lines and cutoff scores is not legally permissible. However, if the intent
of the Act is to not discriminate against members of protected classes
and to mitigate adverse impact and its consequences, then our framework
provides a powerful tool that could be used to explore situations in which
the use of group-based lines and expected cutoff scores may be congruent
with the Act’s intent. We are not advocating the generally unlawful prac-
tice of using group-based regression lines and differential expected cutoff
scores. As noted by an anonymous reviewer, given that many studies do
not have enough power to detect test bias, it would be hard to justify estab-
lishing group-based cut scores particularly with a variable like race that is
not sufficiently discrete (i.e., many people are mixtures of different races
and could legitimately choose to belong to whichever group has the lower
cut score). However, our framework can be used as a tool to help inform
future policy making regarding situations in which public policy may lead
to desirable, and undesirable, outcomes.

Underlying Assumptions and Potential Limitations

We note six underlying assumptions and potential limitations of our
integrative framework. First, as is the case when a validity coefficient is
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used to make decisions regarding a test, our framework assumes that the
criterion measure is not biased. In general, there is a consensus in the
human resource selection literature that supervisory ratings are free from
racial bias (e.g., Cascio & Aguinis, 2005a; Waldman & Avolio, 1991).
However, a recent study by Stauffer and Buckley (2005), which reanalyzed
data previously collected by Sackett and DuBois (1991), concluded that
“if you are a White ratee, then it does not matter whether your supervisor
is Black or White. If you are a Black ratee, then it is important whether
your supervisor is Black or White” (p. 589). The preponderance of the
evidence thus far is in favor of the no-bias conclusion. However, in light
of Stauffer and Buckley’s conclusions, we acknowledge the underlying
assumption in our framework that performance data are unbiased.

Second, an underlying assumption in the use of individual-level crite-
rion data in computing the validity coefficient is that the primary goal of
the selection system is the maximization of individual performance. How-
ever, organizations may wish to maximize team performance or maximize
organizational effectiveness, which may depend less on individual per-
formance and more on unit- and team-level performance. In spite of this
underlying assumption in using validity coefficients, our framework does
allow for the maximization of other, and sometimes competing, goals. In
fact, our framework allows for an explicit consideration of tradeoffs in-
volved in using a particular test to maximize job performance measured at
the individual level in relation to other goals at the unit or organizational
level (i.e., mitigation of expected adverse impact). So, our framework
allows for the consideration of both objective individual-level and higher-
level concerns and as well as both psychometric and value-based factors
in using tests and therefore may allow test developers and users to reach
a “cultural optimum” (Darlington, 1971) in which both psychometric and
other value-based principles are considered (Zedeck & Goldstein, 2000).
Thus, we do not see the use of individual-level criterion data as a limitation
of our framework.

Third, each of the three scenarios we presented to illustrate the appli-
cability of our integrated framework presumes that meeting the 80% ex-
pected adverse impact benchmark is of primary concern to organizations.
As noted earlier, however, our framework and online calculator allows for
analyses based on any targeted expected adverse impact proportion or, for
that matter, using any other criterion as the primary target of focus (e.g.,
minimizing expected bias-based selection errors).

Fourth, as has been common practice in the personnel selection lit-
erature for over 50 years, we make the assumption that “the applicant
group and the present employee group are similarly constituted” (Taylor
& Russell, 1939, p 567). Thus, our framework and calculations apply to
the extent that important differences do not exist between the individuals
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used to obtain total population and group-based parameter estimates and
future applicants.

Fifth, our illustrative Scenarios A through C and the online calcula-
tor presume bivariate normality. To the extent that a particular situation
is known to deviate strongly from normality, the results from our online
calculator should be considered only approximate. Note, however, that
the normality assumption used in a portion of this article is not a limita-
tion of our general framework. Indeed, the general framework proposed
in Appendix A is applicable to any stochastic specification and does not
presume any specific probability distribution. In short, nonnormality may
affect the resulting numerical values (but not the conceptual framework).
Future research could examine empirically the extent to which nonnor-
mality may affect the resulting numerical values given various degrees of
violation of the bivariate normality assumption.

Finally, our methodology and online calculator generate numerical
estimates of bias-based selection errors (i.e., those caused by using a biased
test as if it were unbiased) and not predictive selection errors (i.e., those
caused by using less than perfect prediction systems). Readers interested
in augmenting our framework to include predictive selection errors are
encouraged to refer to Taylor and Russell (1939).

Concluding Remarks

Our integrative framework makes a contribution to theory and practice
in that it allows for a better understanding of the relationship among four
closely related issues in human resource selection: test validity, test bias,
selection errors, and adverse impact. This integrated framework has the
potential to lead to fruitful avenues of research regarding the intrinsic re-
lationships among these key concepts. From a practical point of view, the
proposed framework allows for a better assessment of selection outcomes
before they actually take place and provides an informed evaluation of
tradeoffs between expected performance, expected adverse impact, and
expected selection errors regardless of whether moderated regression or
other tools used to assess potential test bias indicate the test is biased. Fi-
nally, our framework can aid policy makers and the legal system because
it allows for a better understanding of situations under which using differ-
ential selection rules across groups may be beneficial for, and harmful to,
individuals, organizations, and society at large.
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APPENDIX A
The General Formulation

We have a selection test (X) used to predict performance (Y). There
are two groups for which we assume, without loss of generality (Roth,
Bevier, Bobko, Switzer, & Tyler, 2001), that:

µX1 ≤ µX2, and µY1 ≤ µY2 . (A1)

Group 1 represents the minority group and Group 2 the majority group.
Presume that the relationship between X and Y for each group can be
represented by continuous bivariate distribution functions f (X1, Y1) for
Group 1 and f (X2, Y2) for Group 2. A test is said to be unbiased if, for all
X = x,

µY1 | X1=x = µY2 | X2=x ≡ h(x). (A2)

That is, an unbiased test predicts the same mean performance for all indi-
viduals (regardless of group membership) who have the same test scores
via the mean of the conditional distribution of Y given X. A biased test
predicts different average performance for equivalent test scores.

In practice, the conditional mean function is also used to determine
expected selection cutoffs. A desired performance level, y∗, is chosen. If
the test is unbiased, then y∗ is linked to test scores via Equation A2:

y∗ = µY1 | X1=x∗ = µY2 | X2=x∗ = µY | X=x∗ ≡ h(x∗), (A3)

so that the expected selection cutoff , x∗, (again, if the test is unbiased) is
given by:

x∗ = h−1(y∗), (A4)

where x∗ is the value for X predicted backwards through the conditional
mean function at y∗. An individual is under consideration for selection
when his or her score equals or exceeds x∗.
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For the moment, consider Group 1. The expected selection ratio for
Group 1 is given by:

P
(
X1 ≥ x∗) =

∞∫
x∗

∞∫
−∞

f (X1, Y1) dY1dX1 =
∞∫

x∗

∞∫
−∞

f (X1 | Y1) f (Y1) dY1dX1

=
∞∫

x∗

f (X1) dX1 = 1 − FX1 (x
∗), (A5)

where f (X1) is the marginal distribution function for X1 and FX1 (.) is the
cumulative distribution function of f (X1). Analogously, for Group 2, P(X2

≥ x∗) = 1 – FX2 (x
∗) is the expected selection ratio for Group 2 at (x∗, y∗).

Therefore, expected adverse impact (EAI) for an unbiased test is:

EAI = P(X1 ≥ x∗)

P(X2 ≥ x∗)
= 1 − Fx1 (x

∗)

1 − Fx2 (x∗)
. (A6)

Our approach complements that of Maxwell and Arvey (1993), who
used d as a measure of adverse impact. Our work extends theirs by noting
that the expected selection ratio can be measured directly by referring to
the marginal distribution function of the X variable.

When a test is biased, then

h1(x∗) ≡ µY1 | X1=x∗ �= µY2 | X2=x∗ ≡ h2(x∗) (A7)

for at least one x∗, so that expected selection cutoffs will differ by group:

x∗
1 = h−1

1 (y∗) (A8)

x∗
2 = h−1

2 (y∗). (A9)

If the test is biased, a (bias-based) expected false negative for Group 1
will occur when x∗ from h(x∗) is used to determine the expected selection
cutoff and when x∗

1 < x∗. The probability of expected false negatives for
Group 1 is found by:

P
(
x∗

1 ≤ X1 ≤ x∗) =
x∗∫

x∗
1

∞∫
−∞

f (X1, Y1) dY1dX1 = FX1 (x
∗) − FX1 (x

∗
1 )

(A10)

Analogously, a bias-based expected false positive for Group 1 occurs
whenever x∗ < x∗

1; its probability is FX1 (x
∗
1) – FX1 (x

∗). For Group 2,
probabilities of bias-based expected false negatives are FX2 (x

∗) – FX2 (x
∗
2)

when x∗
2 < x∗ and expected false positives are FX2 (x

∗
2) – FX2 (x

∗) when
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x∗ < x∗
2. With two groups, there are four possible combinations of bias-

based expected false positives and negatives:

� Both groups will experience expected false negatives when x∗
1 < x∗

and x∗
2 < x∗ at a given y∗.

� Both groups will experience expected false positives when x∗ < x∗
1

and x∗ < x∗
2 at a given y∗.

� Group 1 will experience expected false positives and Group 2 ex-
pected false negatives when x∗ < x∗

1 and x∗
2 < x∗ at a given y∗.

� Group 1 will experience expected false negatives and Group 2 ex-
pected false positives when x∗

1 < x∗ and x∗ < x∗
2 at a given y∗.

Finally, at a given x∗ value, y∗ as shown in Figure 1 is derived using
Equation A3. For group-based lines, y∗

1 = h1(x∗) and y∗
2 = h2(x∗) via

Equation A7.
This general formulation makes no assumptions about the functional

forms for f (X1, Y1) or f (X2, Y2), nor have we assumed that the condi-
tional expectation of Y given X is linear or that the test is equally valid for
both groups. It is generally applicable to any stochastic specification. In
addition, our formulation readily accommodates more than two groups.
Consider the situation in which there are k minority groups, say 1a through
1k, with Group 2, once again, representing the majority group. In prac-
tice, expected adverse impact is calculated for the expressed purpose of
comparing the minority (i.e., focal) to the majority (i.e., reference) group
(Biddle, 2005). Therefore, expected selection cutoff, expected selection
ratio, and expected adverse impact are calculated as above by replacing
subscripts “1” with “1g” whenever the gth minority group is the focal
group. For calculating probabilities of bias-based expected false positives
and negatives in the presence of more than two groups, the common re-
gression line shown in Figure 4 represents the regression line for all groups
(i.e., 1a through 1k and 2) combined; in the notation above, the common
regression line is simply µY | X =x.

Finally, our formulation also applies to selection situations involving
more than one assessment tool. Suppose, for example, that we are inter-
ested in calculating the expected selection ratio for Group 1 (or Group 1g)
using two tests, T1 and T2. The appropriate calculations for the expected
selection ratio depend on how the organization chooses to use those two
tests for selection purposes. We consider three possibilities.

1. The organization uses a linear combination of the two tests to form a
composite test score, T3 = a1T1 + a2T2, with a1 and a2 being positive
weights less than one and a1 + a2 = 1. In this case, in which a compen-
satory system is used, the mean, standard deviation, and correlation of
the composite test can be derived using known formulas. Numerical
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calculations for expected selection cutoffs, expected selection ratios,
and so forth follow from above after replacing X with T3.

2. The organization defines the expected hiring pool to be those individ-
uals who score at least t∗1 on test T1 and at least t∗2 on test T2. In this
case, the expected selection ratio is given by (suppressing group-based
subscripts):

P
(
T1 ≥ t∗

1 and T2 ≥ t∗
2

) =
∞∫

t∗
1

∞∫

t∗
2

f (T1, T2) dT2dT1. (A11)

3. The organization defines the expected hiring pool to include those
individuals who score at least t∗1 on test T1 or at least t∗2 on test T2.
Here, the expected selection ratio is

P
(
T1 ≥ t∗

1

) + P
(
T2 ≥ t∗

2

) − P
(
T1 ≥ t∗

1 and T2 ≥ t∗
2

)
. (A12)

APPENDIX B
The Normal Model

In this appendix, we assume that the distribution functions f (X1, Y1)
and f (X2, Y2) are bivariate normal with parameters f (Xj, Yj; µXj , µYj , σ Xj ,
σ Yj , ρj ) for groups j = 1, 2.

Because f (X1, Y1) is assumed bivariate normal, the conditional distri-
bution of Y1 given X1 = x is univariate normal with moments:

µY1 | X1=x = µY1 + ρ1
σY1

σX1

(x − µX1 ) (B1)

σ 2
Y1 | X1=x = σ 2

Y1

(
1 − ρ2

1

)
(B2)

(e.g., Lindgren, 1976, p. 470). The assumption of bivariate normality im-
plies that the conditional expectation (regression function) is linear in X,
as shown by Equation B1.

If the test is truly unbiased, then:

µY1 + ρ1
σY1

σX1

(x − µX1 ) = µY2 + ρ2
σY2

σX2

(x − µX2 ). (B3)

Equation B3 holds if and only if both groups have identical regression
functions for all X; that is:

ρ1
σY1

σX1

= ρ2
σY2

σX2

= β (B4)

µY1 − βµX1 = µY2 − βµX2 = α. (B5)
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The expected selection cutoff for an unbiased test using the common re-
gression line is calculated as:

x∗ = (y∗ − α)/β. (B6)

(Equation B6 equals Equation 1 when the test is unbiased because, for
unbiased tests, α1 = α2 = α and β 1 = β 2 = β.)

If the test is biased, from Equation B1, β 1 = ρ1 (σ Y1/σ X1) and α1 =
µY1 – β 1 µX1 (and similarly for Group 2). Group-based expected selection
cutoffs are a straightforward extension of Equation 1 using the group-based
regression lines in Figure 4:

x∗
1 = (y∗ − α1)/β1 (B7)

x∗
2 = (y∗ − α2)/β2. (B8)

When X and Y are bivariate normal, the marginal distributions are univari-
ate normal. Therefore expected selection ratios, expected adverse impact,
and probabilities of bias-based expected false positives and expected false
negatives involve standard normal probabilities as described in the body
of the paper.

Finally, to compare differential performance scores at x∗, we use the
following relationships (see Figure 1):

y∗ = α + βx∗ (B9)

y∗
1 = α1 + β1x∗ (B10)

y∗
2 = α2 + β2x∗. (B11)

Our online calculator computes upper-tail probabilities of standard
normal distributions using the 8-digit accuracy formula given by equation
26.2.16 in Abramowitz and Stegun (1965, p. 932).

APPENDIX C
Calculating Expected Adverse Impact for a Biased Test

We have previously introduced the concept of expected adverse impact
for an unbiased test using the common regression line (see Figure 3 and
Equation 12). Calculation of expected adverse impact when the regression
lines differ across groups is a straightforward extension. In Figure 4, refer
only to the group-based regression lines. If y∗ is the desired performance
level, a biased test produces expected selection cutoff x∗

1 for Group 1 and
x∗

2 for Group 2. If an organization uses group-based selection cutoffs,
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applicants from Group 1 whose test scores exceed x∗
1 comprise the Group

1 expected hiring pool and similarly for Group 2. Expected adverse impact
for a biased test (EAIB) is once again the ratio of the upper-tail areas of
the marginal distributions of test scores, here at the group-based expected
selection cutoffs, x∗

1 and x∗
2:

EAIB = P
(
X1 ≥ x∗

1

)/
P

(
X2 ≥ x∗

2

)
(C1)

or assuming normality and via Equations 15 and 16,

EAIB = P
(
Z > z∗

g1

)/
P

(
Z > z∗

g2

)
. (C2)

To find numerical values for the quantities outlined in this appendix, refer
to the section of our online calculator output screen labeled, “Group-Based
Results” (see Figure 8’s bottom panel). When a biased test is used to find
group-based expected selection cutoffs (and if the test is truly biased),
there will be no expected biased-based errors; furthermore, expected per-
formance is accurately predicted for both groups—at y∗ (see Figure 4).
Therefore, the “Group-Based Results” section of the output screen dis-
plays no probabilities for bias-based expected false positives and/or neg-
atives. Those values (and differential performance predictions) only arise
in our framework when a biased test is used as if it were unbiased.




